VA

1. Cho tam giác ABC vuông tại A , có AH là đường cao ( H thuộc BC ) và AM là tia phân giác của góc HAC ( M thuộc BC ) . Kẻ vuông góc AC tại K a. Chứng minh rằng AH = AK và BA= BM b. Gọi I là giao điểm của đường thẳng MK và đường thẳng AH . Chứng minh rằng AM vuông CI và KH // CI

NT
27 tháng 7 2023 lúc 14:08

a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AK=AH

góc BAM+góc CAM=90 độ

góc BMA+góc MAH=90 độ

mà góc CAM=góc HAM

nên góc BAM=góc BMA

=>ΔBAM cân tại B

b: Xét ΔAIC có

CH,IK là đường cao

CH cắt IK tại M

=>M là trực tâm

=>AM vuông góc CI

Xét ΔACI có

AM vừa là đường cao, vừa là phân giác

=>ΔACI cân tại A

Xét ΔAIC có AH/AI=AK/AC

nên KH//IC

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
VA
Xem chi tiết
PB
Xem chi tiết
NK
Xem chi tiết
TN
Xem chi tiết
KJ
Xem chi tiết
MV
Xem chi tiết
NT
Xem chi tiết
LD
Xem chi tiết