Bài 8: Rút gọn biểu thức chứa căn bậc hai

HH

1. cho biểu thức

A=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\)

a. rút gọn

H24
13 tháng 5 2021 lúc 21:29

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx)((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

Bình luận (0)
H24
13 tháng 5 2021 lúc 21:30

`A=((x\sqrtx-1)/( x-\sqrtx)-(x\sqrtx+1)/(x+\sqrtx)(\sqrtx/(\sqrtx-1)-1/(\sqrtx+1))(x>0,x ne 1)`
`=(((\sqrtx-1)(x+\sqrtx+1))/( x-\sqrtx)-((\sqrtx+1)(x-\sqrtx+1))/(x+\sqrtx))((x+\sqrtx-\sqrtx+1)/(x-1))`
`=((x+\sqrtx+1+x-\sqrtx+1)/\sqrtx) .((x+1) /( x-1)) `
`=((2x+2)/\sqrtx).((x+1) /(x-1 ) )`
`=( 2(x+1)^2) /(\sqrtx(x-1))`

Bình luận (0)

Các câu hỏi tương tự
AE
Xem chi tiết
NB
Xem chi tiết
EO
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết