Violympic toán 9

VV

b1 dùng bđt cô-si cho a,b,c,d là số dương cmr

a)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{a+b+c}{2}\)

b)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)

c)\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)

d)\(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)

b2

a)cho x,y<0 CMR\(\frac{1}{x^2+y^2}\)+\(\frac{1}{xy}\ge6\)

b)cho 0\(\le\)x\(\le\)2CMR\(\left(2x-x^2\right)\left(y-2y^2\right)\le\frac{1}{8}\)

cacs bn giải giùm mk cái mai mk phai nộp r thanks các bn nhìu

H24
3 tháng 10 2019 lúc 18:30

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra khi a =b = c

b)Tương tự câu a

c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)

Nhưng dấu "=" không xảy ra nên ta có đpcm.

d) Chưa nghĩ ra.

Bài 2:

a) Đề thiếu (or sai hay sao ý)

Bình luận (0)
LH
3 tháng 10 2019 lúc 21:49

d, Với a,b >0.Áp dụng bđt svac-xơ có:

\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)

=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
BL
Xem chi tiết
VV
Xem chi tiết
BL
Xem chi tiết
VH
Xem chi tiết
NH
Xem chi tiết
LM
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết