Violympic toán 9

NM

cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right.\).CMR: \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}\)

DP
7 tháng 1 2020 lúc 16:38

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

Bình luận (0)
 Khách vãng lai đã xóa
DP
19 tháng 1 2020 lúc 19:10

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

Bình luận (0)
 Khách vãng lai đã xóa
NM
21 tháng 1 2020 lúc 18:01

Akai Haruma

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
BL
Xem chi tiết