H24
NL
5 tháng 11 lúc 1:11

\(f\left(x^2.f\left(x\right)\right)=-2\Rightarrow\left[{}\begin{matrix}x^2.f\left(x\right)=0\\x^2.f\left(x\right)=a;b;c\\\end{matrix}\right.\)

Với \(0< a< b< c\)

Phương trình \(x^2.f\left(x\right)=0\) có 3 nghiệm

Xét \(f\left(x\right)=\dfrac{a}{x^2}\) với \(a>0\)

Đồ thị \(\dfrac{a}{x^2}\) (dễ dàng lập BBT) có 2 nhánh nằm 2 bên trục Oy, nên mỗi nhánh cắt f(x) tại 1 điểm

Do đó \(f\left(x\right)=\dfrac{a}{x^2}\) luôn có 2 nghiệm với mọi a dương

\(\Rightarrow\)Có \(3+3.2=9\) nghiệm

Bình luận (0)