Áp dụng BĐT Cô-si:
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^4b}{b}}=2a^2\)
Tương tự: \(\dfrac{b^3}{c}+bc\ge2b^2\); \(\dfrac{c^3}{a}+ca\ge2c^2\)
Cộng vế:
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\) (1)
Mặt khác:
\(a^2+b^2\ge2ab\) ; \(b^2+c^2\ge2bc\); \(c^2+a^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (2)
(1);(2) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Đúng 0
Bình luận (0)