Xét ΔABC vuông tại C có \(cosA=\dfrac{CA}{AB}\)
=>\(\dfrac{CA}{AB}=\dfrac{5}{13}\)
=>\(\dfrac{CA}{5}=\dfrac{AB}{13}=k\)
=>CA=5k; AB=13k
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(\left(13k\right)^2-\left(5k\right)^2=CB^2=100\)
=>\(144k^2=100\)
=>\(k^2=\dfrac{100}{144}=\dfrac{25}{36}\)
=>\(k=\dfrac{5}{6}\)
=>\(CA=5\cdot\dfrac{5}{6}=\dfrac{25}{6}\left(cm\right);AB=13\cdot\dfrac{5}{6}=\dfrac{65}{6}\left(cm\right)\)