NH
NT

a: Xét tứ giác AKHB có \(\widehat{AKB}=\widehat{AHB}=90^0\)

nên AKHB là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{xCB}\) là góc tạo bởi tiếp tuyến Cx và dây cung CB

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

Do đó: \(\widehat{xCB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{CHK}\left(=180^0-\widehat{KHB}\right)\)

nên \(\widehat{xCB}=\widehat{CHK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên HK//xx'

Bình luận (1)

Các câu hỏi tương tự
XD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
gh
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết