H24
NT
1 tháng 2 2024 lúc 14:34

a: Gọi d=ƯCLN(n+2;2n+5)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+5-2n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+2;2n+5)=1

=>\(\dfrac{n+2}{2n+5}\) là phân số tối giản

b: Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

=>\(4n+6-4n-8⋮d\)

=>\(-2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(\dfrac{2n+3}{4n+8}\) là phân số tối giản

c: Đề sai với n=1 rồi bạn

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
PL
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
VH
Xem chi tiết
MD
Xem chi tiết