ĐKXĐ: \(x\notin\left\{-5;-1;5;-3\right\}\)
\(A=\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-125}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5-2x\right)\left(3x+5+2x\right)}+\dfrac{5\left(x^2-25\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{3\cdot\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{\left(x+5\right)\cdot5\left(x+1\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\cdot\left(x+1\right)}-\dfrac{\left(x+3\right)\cdot3\left(x+1\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(x+5\right)\left(x+1\right)}+\dfrac{x+5}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{4\left(x+3\right)^2+\left(x+5\right)^2-\left(x+1\right)^2}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4\left(x^2+6x+9\right)+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4x^2+24x+36+8x+24}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4x^2+32x+60}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4\left(x^2+8x+15\right)}{\left(x+5\right)\left(x+1\right)}=\dfrac{4\left(x+3\right)}{x+1}\)