H24
NT

a: Ta có: ΔOED cân tại O

mà OH là đường trung tuyến

nên OH\(\perp\)DE

Xét tứ giác OHAB có \(\widehat{OHA}+\widehat{OBA}=90^0+90^0=180^0\)

nên OHAB là tứ giác nội tiếp

=>O,A,H,B cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{ABD}=\widehat{BED}\)

=>\(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD~ΔAEB

=>\(\dfrac{AB}{AE}=\dfrac{BD}{BE}\)

Bình luận (0)

Các câu hỏi tương tự
XD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
gh
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết