ND
NT
17 tháng 12 2023 lúc 20:04

1: 

a: \(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10>=10\forall x\)

Dấu '=' xảy ra khi 2x+1=0

=>2x=-1

=>\(x=-\dfrac{1}{2}\)

b: \(C=2x^2-2x\)

\(=2\left(x^2-x\right)\)

\(=2\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}>=-\dfrac{1}{2}\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

2: 

a: \(A=-x^2-8x+5\)

\(=-x^2-8x-16+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=-3x^2+2x+5\)

\(=-3\left(x^2-\dfrac{2}{3}x-\dfrac{5}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{16}{9}\right)\)

\(=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{16}{3}< =\dfrac{16}{3}\forall x\)

Dấu '=' xảy ra khi x-1/3=0

=>x=1/3

Bình luận (1)
H24
17 tháng 12 2023 lúc 20:15

1)

a) \(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1^2\right]+10\)

\(=\left(2x+1\right)^2+10\)

Ta thấy: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu \("="\) xảy ra khi: \(2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(Min_A=10\) khi \(x=-\dfrac{1}{2}\).

b) \(C=2x^2-2x\)

\(=2\left(x^2-x\right)\)

\(=2\left(x^2-x+\dfrac{1}{4}\right)-2\cdot\dfrac{1}{4}\)

\(=2\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\dfrac{1}{2}\)

\(=2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)

Ta thấy: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow C=2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(Min_C=-\dfrac{1}{2}\) khi \(x=\dfrac{1}{2}\).

2)

a) \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16\right)+16+5\)

\(=-\left(x^2+2\cdot x\cdot4+4^2\right)+21\)

\(=-\left(x+4\right)^2+21\)

Ta thấy: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+4\right)^2\le0\forall x\)

\(\Rightarrow A=-\left(x+4\right)^2+21\le21\forall x\)

Dấu \("="\) xảy ra khi: \(x+4=0\Leftrightarrow x=-4\)

Vậy \(Max_A=21\) khi \(x=-4\).

b) \(B=5-3x^2+2x\)

\(=-\left(3x^2-2x\right)+5\)

\(=-3\left(x^2-\dfrac{2}{3}x\right)+5\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)+3\cdot\dfrac{1}{9}+5\)

\(=-3\left[x^2-2\cdot x\cdot\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]+\dfrac{1}{3}+5\)

\(=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{16}{3}\)

Ta thấy: \(\left(x-\dfrac{1}{3}\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(x-\dfrac{1}{3}\right)^2\le0\forall x\)

\(\Rightarrow B=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{16}{3}\le\dfrac{16}{3}\forall x\)

Dấu \("="\) xảy ra khi: \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(Max_B=\dfrac{16}{3}\) khi \(x=\dfrac{1}{3}\).

\(\text{#}Toru\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
TL
Xem chi tiết
TV
Xem chi tiết
HD
Xem chi tiết
TL
Xem chi tiết
DA
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
UN
Xem chi tiết