9: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{16-2\sqrt{55}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|\sqrt{11}-\sqrt{5}\right|=\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{5}\right)}{2}\)
10:\(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{14+2\sqrt{33}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|\sqrt{11}+\sqrt{3}\right|=\dfrac{\sqrt{2}\left(\sqrt{11}+\sqrt{3}\right)}{2}\)
11: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{14-6\sqrt{5}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|3-\sqrt{5}\right|=\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{2}\)
12: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{46+6\sqrt{5}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|3\sqrt{5}+1\right|=\dfrac{\sqrt{2}\left(3\sqrt{5}+1\right)}{2}\)
13: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{14-2\sqrt{33}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|\sqrt{11}-\sqrt{3}\right|=\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{3}\right)}{2}\)
14: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{16-2\sqrt{55}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|\sqrt{11}-\sqrt{5}\right|=\dfrac{\sqrt{2}\left(\sqrt{11}-\sqrt{5}\right)}{2}\)
15: \(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{16+2\sqrt{55}}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left|\sqrt{11}+\sqrt{5}\right|=\dfrac{\sqrt{2}\left(\sqrt{11}+\sqrt{5}\right)}{2}\)
16:\(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{6-2\sqrt{5}}=\dfrac{\sqrt{2}}{2}\cdot\left(\sqrt{5}-1\right)\)