35:
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{\left(2-\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
36:
\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{3^2-\left(6+\sqrt{7+\sqrt{2}}\right)}\)
\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{3+\sqrt{7+\sqrt{2}}}\cdot\sqrt{3-\sqrt{7+\sqrt{2}}}\)
\(=\sqrt{2+\sqrt{2}}\cdot\sqrt{9-7-\sqrt{2}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2}\)