Có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\\ \Rightarrow1+\dfrac{a+b+c+d}{a}=1+\dfrac{a+b+c+d}{b}=1+\dfrac{a+b+c+d}{c}=1+\dfrac{a+b+c+d}{d}\\ \Rightarrow a=b=c=d\\ \Rightarrow M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\\ =1+1+1+1=4\)