\(\dfrac{a}{2b^3+1}=a-\dfrac{2ab^3}{1+2b^3}=a-\dfrac{2a^3}{1+b^3+b^3}>=a-2\cdot\dfrac{2}{3}\cdot\dfrac{ab^3}{2\cdot\sqrt[3]{b^6}}=a-\dfrac{2}{3}ab\)
Tương tự, ta có:
\(\dfrac{b}{2c^3+1}>=b-\dfrac{2}{3}bc\)
\(\dfrac{c}{2a^3+1}>=c-\dfrac{2}{3}ac\)
=>B>=a+b+c-2
(a+b+c)^2>=3(ab+bc+ac)=9
=>a+b+c>=3
=>B>=3-2=1
Dấu = xảy ra khi a=b=c=1