\(\dfrac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)
\(tana=\dfrac{sina}{cosa}=-\dfrac{3}{4}\)
\(sin\left(2a+\dfrac{\pi}{3}\right)=sin2a.cos\left(\dfrac{\pi}{3}\right)+cos2a.sin\left(\dfrac{\pi}{3}\right)\)
\(=2sina.cosa.sin\left(\dfrac{\pi}{3}\right)+\left(2cos^2a-1\right)sin\left(\dfrac{\pi}{3}\right)=\dfrac{-24+7\sqrt{3}}{50}\)