a, \(AB//CD\)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(soletrong\right)\)
Xét \(\Delta ABC\) và \(\Delta CDA\) có
\(AB=CD\left(gt\right)\\ \widehat{BAC}=\widehat{ACD}\left(cmt\right)\)
\(AC\) chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(b,\Rightarrow\widehat{B}=\widehat{D}\\ \Rightarrow\widehat{DAC}=\widehat{ACB}\)
\(c,\widehat{DAC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow AD//BC\)