`a)`\(x=2\sqrt{1,2+2\dfrac{4}{5}}\)
\(x=\sqrt{\dfrac{24}{5}+\dfrac{56}{5}}\)
\(x=\sqrt{\dfrac{80}{5}}\)
\(x=\sqrt{16}\)
\(x=4\)
`b)`\(\left(3-\sqrt{2}\right)x=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(x=\dfrac{\left|3-\sqrt{2}\right|}{3-\sqrt{2}}\)
\(x=\dfrac{3-\sqrt{2}}{3-\sqrt{2}}\)
\(x=1\)
a)\(x=2\sqrt{1,2+\dfrac{2.5+4}{5}}=2\sqrt{\dfrac{6}{5}+\dfrac{14}{5}}\)
\(x=2\sqrt{\dfrac{20}{5}}=2\sqrt{4}\)
\(x=2\sqrt{2^2}=2.\left|2\right|=2.2=4\)
b)\(\left(3-\sqrt{2}\right).x=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=>x=\dfrac{\sqrt{\left(3-\sqrt{2}\right)^2}}{3-\sqrt{2}}\)
\(x=\dfrac{\left|3-\sqrt{2}\right|}{3-\sqrt{2}}=1\)
a: \(x=2\cdot\sqrt{\dfrac{6}{5}+2+\dfrac{4}{5}}=2\cdot2=4\)
b: \(\Leftrightarrow x=\dfrac{3-\sqrt{2}}{3-\sqrt{2}}=1\)