H24
TT
22 tháng 4 2022 lúc 22:25
Bình luận (0)
NL
22 tháng 4 2022 lúc 22:50

1.

\(ab+1\le b\Leftrightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{x}{2}+\dfrac{x}{2}+\dfrac{1}{16x^2}\right)+\left(\dfrac{y}{2}+\dfrac{y}{2}+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(P\ge3\sqrt[3]{\dfrac{x^2}{64x^2}}+3\sqrt[3]{\dfrac{y^2}{64y^2}}+\dfrac{15}{16}.\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(P\ge\dfrac{3}{2}+\dfrac{15}{32}.\left(\dfrac{4}{x+y}\right)^2\ge\dfrac{3}{2}+\dfrac{15}{32}.4^2=9\)

\(P_{min}=9\) khi \(x=y=\dfrac{1}{2}\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)

Bình luận (0)
NL
22 tháng 4 2022 lúc 22:50

2.

\(ab+4\le2b\Rightarrow2\ge a+\dfrac{4}{b}\ge2\sqrt{\dfrac{4a}{b}}\Rightarrow\dfrac{a}{b}\le\dfrac{1}{4}\)

\(\Rightarrow\dfrac{b}{a}\ge4\)

Đặt \(\dfrac{b}{a}=x\Rightarrow x\ge4\)

\(P=\dfrac{\dfrac{b}{a}}{1+2\left(\dfrac{b}{a}\right)^2}=\dfrac{x}{2x^2+1}\Rightarrow\dfrac{1}{P}=2x+\dfrac{1}{x}\)

\(\Rightarrow\dfrac{1}{P}=\left(\dfrac{x}{16}+\dfrac{1}{x}\right)+\dfrac{31}{26}x\ge2\sqrt{\dfrac{x}{16x}}+\dfrac{31}{16}.4=\dfrac{33}{4}\)

\(\Rightarrow P\le\dfrac{4}{33}\)

\(P_{max}=\dfrac{4}{33}\) khi \(x=4\Rightarrow\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)

Bình luận (0)
NL
22 tháng 4 2022 lúc 22:55

4.

\(\dfrac{3b}{1+b}=1-\dfrac{a}{1+a}=\dfrac{1}{1+a}\)

Lại có:

\(\dfrac{a}{1+a}+\dfrac{2b}{1+b}=1-\dfrac{b}{1+b}\)

\(\Rightarrow\dfrac{1}{1+b}=\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{b}{1+b}\ge3\sqrt[3]{\dfrac{ab^2}{\left(1+a\right)\left(1+b\right)^2}}\)

\(\Leftrightarrow\dfrac{1}{\left(1+b\right)^3}\ge\dfrac{27ab^2}{\left(1+a\right)\left(1+b\right)^2}\)

\(\Leftrightarrow\dfrac{1}{1+b}\ge\dfrac{27ab^2}{1+a}=27ab^2.\dfrac{3b}{1+b}\)

\(\Leftrightarrow81ab^3\le1\)

\(\Leftrightarrow ab^3\le\dfrac{1}{81}\)

\(P_{max}=\dfrac{1}{81}\) khi \(a=b=\dfrac{1}{3}\)

Bình luận (0)
NL
22 tháng 4 2022 lúc 22:55

3.

\(\dfrac{a}{1+a}+\dfrac{2b}{1+b}=1\Leftrightarrow\dfrac{2b}{1+b}=1-\dfrac{1}{1+a}=\dfrac{1}{1+a}\)

Ta có:

\(\dfrac{a}{1+a}+\dfrac{b}{1+b}=1-\dfrac{b}{1+b}\Rightarrow\dfrac{1}{1+b}=\dfrac{a}{1+a}+\dfrac{b}{1+b}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\)

\(\Rightarrow\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{4ab}{\left(1+a\right)\left(1+b\right)}\Rightarrow\dfrac{1}{1+b}\ge\dfrac{4ab}{1+a}=4ab.\dfrac{2b}{1+b}\)

\(\Rightarrow8ab^2\le1\)

\(\Rightarrow ab^2\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
TL
Xem chi tiết
TV
Xem chi tiết
HD
Xem chi tiết
TL
Xem chi tiết
DA
Xem chi tiết
TL
Xem chi tiết
ND
Xem chi tiết
UN
Xem chi tiết