1:
1: \(A=\sqrt{\sqrt{3}-\sqrt{1-2\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=1\)
2:
b: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y\right)=0\left(1\right)\\\left(x+y\right)\left(3x-y\right)-\left(3x-y\right)-2=0\left(2\right)\end{matrix}\right.\)
(1); (x-y)(2x-y)=0
=>y=x hoặc y=2x
(2): (x+y)(3x-y)-(3x-y)-2=0
=>(3x-y)(x+y-1)-2=0
TH1: y=x
=>(3x-x)(x+x-1)-2=0
=>2x(2x-1)-2=0
=>x(2x-1)-1=0
=>2x^2-x-1=0
=>(x-1)(2x+1)=0
=>x=1 hoặc x=-1/2
=>y=1 hoặc y=-1/2
TH2: y=2x
(3x-y)(x+y-1)-2=0
=>(3x-2x)(x+2x-1)-2=0
=>3x^2-x-2=0
=>3x^2-3x+2x-2=0
=>(x-1)(3x+2)=0
=>x=1 hoặc x=-2/3
=>y=2 hoặc y=-4/3