H24
NT

\(\dfrac{1}{101}< \dfrac{1}{100}\)

\(\dfrac{1}{102}< \dfrac{1}{100}\)

...

\(\dfrac{1}{200}< \dfrac{1}{100}\)

Do đó: \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)

=>\(A< \dfrac{100}{100}=1\)

\(\dfrac{1}{101}>\dfrac{1}{200}\)

\(\dfrac{1}{102}>\dfrac{1}{200}\)

...

\(\dfrac{1}{200}=\dfrac{1}{200}\)

Do đó: \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)

=>\(A>\dfrac{100}{200}=\dfrac{1}{2}\)

=>\(\dfrac{1}{2}< A< 1\)

Bình luận (0)