Ta chứng minh bằng quy nạp:
- Với \(n=1\Rightarrow x_1>\dfrac{1}{2}-\dfrac{1}{2}=0\) đúng do \(x_n>0;\forall n\)
- Giả sử điều đó đúng với \(n=k>1\) hay \(x_k>\dfrac{1}{2}-\dfrac{1}{2k}\)
Ta cần chứng minh \(x_{k+1}>\dfrac{1}{2}-\dfrac{1}{2\left(k+1\right)}=\dfrac{k}{2\left(k+1\right)}\)
Thật vậy, ta có:
\(x_{k+1}\left(1-x_k\right)\ge\dfrac{1}{4}\Rightarrow x_{k+1}\ge\dfrac{1}{4-4x_k}>\dfrac{1}{4-4\left(\dfrac{1}{2}-\dfrac{1}{2k}\right)}\)
\(\Rightarrow x_{k+1}>\dfrac{1}{2+\dfrac{2}{k}}=\dfrac{k}{2\left(k+1\right)}\) (đpcm)
Ta có: \(x_{k+1}-x_k=x_{k+1}+\left(1-x_k\right)-1\ge2\sqrt{x_{k+1}\left(1-x_k\right)}-1\ge2\sqrt{\dfrac{1}{4}}-1=0\)
\(\Rightarrow x_{k+1}\ge x_k\Rightarrow\) dãy tăng và bị chặn trên (dãy bị chặn theo theo giả thiết \(x_n< 1\))
\(\Rightarrow\) Dãy có giới hạn
Gọi giới hạn của dãy là a
\(\Rightarrow a\left(1-a\right)\ge\dfrac{1}{4}\Leftrightarrow a=\dfrac{1}{2}\)