Bài 2: Dãy số

NL
8 tháng 8 2021 lúc 16:41

Nếu tồn tại 1 số hạng trong dãy, giả sử \(u_k< \dfrac{1}{2}\)

 \(\Rightarrow\dfrac{u_{k-1}^2}{2u_{k-1}-1}=u_k< \dfrac{1}{2}\Rightarrow\dfrac{2u_{k-1}^2-2u_{k-1}+1}{2u_{k-1}-1}< 0\)

\(\Rightarrow2u_{k-1}-1< 0\Rightarrow u_{k-1}< \dfrac{1}{2}\)

Cứ quy nạp lùi như vậy, ta sẽ có \(u_1< \dfrac{1}{2}\) (mâu thuẫn giả thiết)

\(\Rightarrow\) Mọi số hạng trong dãy đều lớn hơn \(\dfrac{1}{2}\), hay dãy đã cho là dãy dương và \(2u_n-1>0\) với mọi n

Do đó:

\(\dfrac{1}{u_{n+1}}=-\dfrac{1}{u_n^2}+\dfrac{2}{u_n}\Rightarrow\dfrac{1}{u_{n+1}}-1=-\dfrac{1}{u_n^2}+\dfrac{2}{u_n}-1=-\left(\dfrac{1}{u_n}-1\right)^2\le0\)

\(\Rightarrow\dfrac{1}{u_{n+1}}\le1\Rightarrow u_{n+1}\ge1\Rightarrow\) dãy bị chặn dưới bởi 1

\(u_n-u_{n+1}=u_n-\dfrac{u_n^2}{2u_n-1}=\dfrac{u_n\left(u_n-1\right)}{2u_n-1}\ge0\Rightarrow u_n\ge u_{n+1}\Rightarrow\) dãy giảm

Dãy giảm và bị chặn dưới \(\Rightarrow\) dãy bị chặn

b.

Từ phân tích trên: \(\dfrac{1}{u_{n+1}}-1=-\left(\dfrac{1}{u_n}-1\right)^2\) \(\Leftrightarrow1-\dfrac{1}{u_{n+1}}=\left(1-\dfrac{1}{u_n}\right)^2\)

Đặt \(v_n=1-\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{u_1}=\dfrac{1}{2}\\v_{n+1}=v_n^2\end{matrix}\right.\)

\(v_{n+1}=v_n^2=v_{n-1}^{2^2}=v_{n-2}^{2^3}=...=v_1^{2^n}=\left(\dfrac{1}{2}\right)^{2^n}\)

\(\Rightarrow v_n=\left(\dfrac{1}{2}\right)^{2^{n-1}}\)

\(\Rightarrow u_n=\dfrac{1}{1-v_n}=\dfrac{1}{1-\left(\dfrac{1}{2}\right)^{2^{n-1}}}=\dfrac{2^{2^{n-1}}}{2^{2^{n-1}}-1}\)

Bình luận (4)

Các câu hỏi tương tự
MT
Xem chi tiết
CP
Xem chi tiết
SK
Xem chi tiết
HD
Xem chi tiết
TA
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
PM
Xem chi tiết
TP
Xem chi tiết
TH
Xem chi tiết