\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow2\left(x^2+y^2\right)\ge x^2+2xy+y^2\)
\(\Rightarrow P\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\cdot\sqrt{10^2}=5\)
Dấu = khi \(x=y=\frac{\sqrt{10}}{2}\)
Vậy Pmin=5 khi \(x=y=\frac{\sqrt{10}}{2}\)
Đúng 0
Bình luận (0)