\(y^2=2+2\sqrt{1-x^2}\)
Do \(\sqrt{1-x^2}\ge0\)
Nên \(y^2\ge2\)
Dấu "=" xảy ra khi :x=1 hoặc x=-1
\(y^2=2+2\sqrt{1-x^2}\)
Do \(\sqrt{1-x^2}\ge0\)
Nên \(y^2\ge2\)
Dấu "=" xảy ra khi :x=1 hoặc x=-1
Cho \(-1\le x\le1\). Tìm GTNN của biểu thức \(y=\frac{5-3x}{\sqrt{1-x^2}}\)
cho biểu thức: P=\(\sqrt{\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1}\)
Rút gọn P với \(0\le x\le1\)
Tìm Min của A=\(\sqrt{4-x}+\sqrt{4+x}\) với \(-4\le x\le4\)
Tìm min của A=\(\sqrt{3+x}+\sqrt{6-x}\) với \(-3\le x\le6\)
tìm min
a, \(A=x-5\sqrt{x-1}+17\)
b, \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
cho biểu thức\(p=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1\) Điều kiện x>0
a)rút gọn P
b)tìm Min của P
cho biểu thức
\(p=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\) với x>= 0
a)rút gọn biểu thức
b)tìm x để P=\(\frac{8}{9}\)
c)tìm Max,Min của P
cho biểu thức
p=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\frac{4\sqrt{x}}{3}\)
a)rút gọn biểu thức
b)tìm x dể p =8/9
c)tìm Max,Min của p
Tìm Min:
A=\(\frac{5-3x}{\sqrt{1-x^2}}\)
B=\(\sqrt{x+2\left(1+\sqrt{x+1}\right)}\)
C=\(\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)