Khoảng cách giữa hai bến sông A và B là 30km. Một ca nô đi từ A đến B, nghỉ 40 phút ở B, rồi lại trở về bến A. Thời gian kể từ lúc đi đến lúc trở về đến A là 6 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết rằng vận tốc của dòng nước là 3km/h.
Khoảng cách giữa hai bến sông A và B là 30km. Một ca nô đi từ A đến B, nghỉ 40 phút ở B, rồi lại trở về bến A. Thời gian kể từ lúc đi đến lúc trở về đến A là 6 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết rằng vận tốc của dòng nước là 3km/h.
Cho hàm số \(y=-3x^2\). Khẳng định nào sau đây là đúng ?
(A) Khi \(0< x< 15\), hàm số đồng biến
(B) Khi \(-1< x< 1\), hàm số đồng biến
(C) Khi \(-12< x< 0\), hàm số đồng biến
(D) Khi \(-15< x< 1\), hàm số đồng biến
Muốn tìm hai số khi biết tổng của chúng bằng S, tích của chúng bằng P thì ta giải phương trình nào sau đây :
(A) \(x^2+Sx+P=0\)
(B) \(x^2-Sx+p=0\)
(C) \(x^2-Sx-P=0\)
(D) \(x^2+Sx-P=0\)
(B) x2 - Sx + p = 0
Trả lời bởi Mysterious PersonGiải các phương trình :
a) \(x^3+4x^2+x-6=0\)
b) \(x^3-2x^2-5x+6=0\)
c) \(2x^4+2\sqrt{2}x^3+\left(1-3\sqrt{2}\right)x^2-3x-4=0\)
d) \(\left(2x^2+7x-8\right)\left(2x^2+7x-3\right)-6=0\)
Cho phương trình :
\(x^2+px+1=0\)
có hai nghiệm. Xác định p biết rằng tổng các bình phương của hai nghiệm bằng 254
tổng bình phương của 2 nghiệm = 254
\(\Leftrightarrow\) x12 + x22 = 254 \(\Leftrightarrow\) (x1 + x2)2- 2x1.x2 = 254 (1)
áp dụng hệ thức vi ét ta có : x1 + x2 = -p
x1.x2 = 1
thay vào (1) \(\Leftrightarrow\) (-p)2-2.1 = 254\(\Leftrightarrow\) p2 - 2 = 254
\(\Leftrightarrow\) p2 = 256 \(\Leftrightarrow\) p = \(\sqrt{256}\) \(\Leftrightarrow\) p = 16
vậy p = 16 thì tổng các bình phương của 2 nghiệm bằng 254
Trả lời bởi Mysterious Person
Cho phương trình :
\(x^4-13x^2+m=0\)
Tìm các giá trị của m để phương trình :
a) Có 4 nghiệm phân biệt
b) Có 3 nghiệm phân biệt
c) Có 2 nghiệm phân biệt
d) Có một nghiệm
e) Vô nghiệm
gọi x (Km/ h)là vận tốc của ca nô khi nước yên lặng
vận tốc khi đi suôi dòng là x + 3
vận tốc khi đi ngực dòng là x - 3
thời gian khi đi suôi dòng là \(\dfrac{30}{x+3}\)
thời gian khi đi ngực dòng là \(\dfrac{30}{x-3}\)
thời gian nghỉ là 40 phút = \(\dfrac{40}{60}\) = \(\dfrac{2}{3}\) giờ
vì tổng thời gian từ lúc đi đến lúc trở về là 6 giờ
nên ta có phương trình :
\(\dfrac{30}{x+3}\)+\(\dfrac{30}{x-3}\)+\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{30.\left(x-3\right)+30.\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) +\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)+\(\dfrac{2}{3}\) = 6\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)= \(\dfrac{16}{3}\)
\(\Leftrightarrow\) 180x = 16x2 - 144\(\Leftrightarrow\) 16x2 -180x -144 = 0
\(\Leftrightarrow\) 4x2 - 45x -36 = 0
giải \(\Delta\) ta có 2 nghiệm :x1=12 (tmđk) ; x2=-\(\dfrac{3}{4}\) (loại)
vậy vận tốc khi nước yên lặng là 12(Km/h)