Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có chiều dài trục lớn và trục nhỏ lần lượt là 769 266km và 768 106 km. Tính khoảng cách ngắn nhất và khoảng cách dài nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng các đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip ?
Cho 3 điểm \(A\left(4;3\right);B\left(2;7\right);C\left(-3;-8\right)\)
a) Tìm tọa độ của trọng tâm G và trực tâm H của tam giác ABC
b) Gọi T là tâm của đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
Tìm góc giữa hai đường thẳng \(\Delta_1\) và \(\Delta_2\) trong các trường hợp sau :
a) \(\Delta_1:2x+y-4=0\) và \(\Delta_2:5x-2y+3=0\)
b) \(\Delta_1:y=-2x+4\) và \(\Delta_2:y=\dfrac{1}{2}x+\dfrac{3}{2}\)
Lập phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng :
\(3x-4y+12=0\) và \(12x+5y-7=0\)
Cho đường thẳng \(\Delta:x-y+2=0\) và hai điểm \(O\left(0;0\right);A\left(2;0\right)\)
a) Tìm điểm đối xứng của O qua \(\Delta\)
b) Tìm điểm M trên \(\Delta\) sao cho độ dài đường gấp khúc OMA ngắn nhất
Cho \(A\left(1;2\right);B\left(-3;1\right);C\left(4;-2\right)\). Tìm tập hợp các điểm M sao cho \(MA^2+MB^2=MC^2\) ?
Cho hình chữ nhật ABCD. Biết các đỉnh \(A\left(5;1\right);C\left(0;6\right)\) và phương trình CD : \(x+2y-12=0\). Tìm phương trình các đường thẳng chứa các cạnh còn lại ?
Ta có: ABCD là hình chữ nhật nên AB // CD.
Khi đó AB có phương trình: x + 2y + m = 0
Mà A(5; 1) ∈ AB nên m = -7.
Vậy AB có phương trình: x + 2y – 7 = 0
Mặt khác AD ⊥ AB nên AD có phương trình là: 2x – y + n = 0
Mà A ∈ AD nên n = -9.
Vậy AD có phương trình: 2x – y – 9 = 0.
Vì BC // AD nên BC có phương trình: 2x – y + p = 0.
Mà C ∈ BC nên p = 6
Vậy CB có phương trình 2x – y + 6 = 0.
Trả lời bởi Đức MinhTìm tập hợp các điểm cách đều hai đường thẳng :
\(\Delta_1:5x+3y-3=0\)
\(\Delta_2:5x+3y+7=0\)
Cho đường tròn (C) có tâm I(1;2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó ta vẽ được hai tiếp tuyến với (C) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó ?
Gọi T là tiếp tuyến của (C) và tiếp tuyến vẽ từ M, ta có: ΔITM vuông tại T cho: IM = 2IT = 6.
Vậy tập hợp các điểm M là đường tròn tâm I, bán kính R = 6.
Phương trình đường tròn này là:
(x - 1)2 + (y - 2)2 = 36
Trả lời bởi Đức Minh