Bài 8: Tính chất ba đường trung trực của tam giác

SK
Hướng dẫn giải Thảo luận (1)

Giải

a) D thuộc đường trung trực của AB nên DA = DB (tính chất đường trung trực)

Vậy ∆ADB cân tại D.

E thuộc đường trung trực của AC nên AE = EC (tính chất đường trung trực)

Vậy ∆AEC cân tại A.

b)Vì O là giao điểm ba đường trung trực của ∆ABC nên:

OA = OB = OC

Vậy (O;OA) đi qua ba điểm A, B, C.

Trả lời bởi Thảo Phương
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Vì E thuộc đường trung trực của đoạn thẳng AB nên EA = EB, hay tam giác EAB cân tại đỉnh E. Suy ra \(\widehat{B}=\widehat{A_1}\). Tương tự, có \(\widehat{C}=\widehat{A_2}\). Ta có:

\(\widehat{EAF}=\widehat{A}-\left(\widehat{A_1}+\widehat{A_2}\right)=\widehat{A}-\left(\widehat{B}+\widehat{C}\right)\)

Mặt khác

\(\widehat{B}+\widehat{C}=180^0-\widehat{A}=180^0-100^0=80^0\)

Trả lời bởi Đồ hút HP ngọc rồng onli...
SK
Hướng dẫn giải Thảo luận (2)

Theo bài 8.3 ta đã có\(\widehat{A_1} =\widehat{B}_1;\widehat{A_2}=\widehat{C_1} \) (1)

Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra \(\widehat{OAB}=\widehat{OBA},\widehat{OAC}=\widehat{OCA},\widehat{OCB}=\widehat{OBC}\)Kết hợp với (1) \(\widehat{OBM}=\widehat{OAM},\widehat{OCN}=\widehat{OAN}\) hay\(\widehat{OAM}=\widehat{OBC}=\widehat{OCB}=\widehat{OAN}\) . Vậy OA là tia phân giác góc MAN.

Trả lời bởi Thảo Phương