Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(x^2+px+q=0\). Hãy lập một phương trình bậc hai có hai nghiệm là \(x_1+x_2\) và \(x_1.x_2\)
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(x^2+px+q=0\). Hãy lập một phương trình bậc hai có hai nghiệm là \(x_1+x_2\) và \(x_1.x_2\)
Dùng định lí Vi - ét, hãy chứng tỏ rằng nếu tam thức \(ax^2+bx+c\) có hai nghiệm \(x_1,x_2\) thì nó được phân tích thành :
\(ax^2+bx+c=a\left(x-x_1\right)\left(x-x_2\right)\)
Áp dụng :
Phân tích các tam thức sau thành tích :
a) \(x^2-11+30\)
b) \(3x^2+14x+8\)
c) \(5x^2+8x-4\)
d) \(x^2-\left(1+2\sqrt{3}\right)x-3+\sqrt{3}\)
ax2+bx+c=a(x2+\(\dfrac{b}{a}\)x+\(\dfrac{c}{a}\))
=a(x2-(x1+x2)x+x1x2)
=a(x-x1)(x-x2)
Áp dụng:
Câu a: Ptr có 2 nghiệm là 5,6=>x2-11x+30=(x-5)(x-6)
Câu b: Ptr có 2 nghiệm là \(\dfrac{-2}{3}\),-4=>3x2+14x+8=3(x+\(\dfrac{2}{3}\))(x+4)
Câu c: Ptr có 2 nghiệm là \(\dfrac{2}{5}\),-2=>5x2+8x-4=5(x-\(\dfrac{2}{5}\))(x+2)
Câu d: Ptr có 2 nghiệm là 3+\(\sqrt{3}\),-2+\(\sqrt{3}\)=>
x2-(1+2\(\sqrt{3}\))x-3+\(\sqrt{3}\)=(x-3-\(\sqrt{3}\))(x+2-\(\sqrt{3}\))
Trả lời bởi Huy Hoàng Nguyễn
Cho phương trình :
\(\left(2m-1\right)x^2-2\left(m+4\right)x+5m+2=0,\left(m\ne\dfrac{1}{2}\right)\)
a) Tìm giá trị của m để phương trình có nghiệm
b) Khi phương trình có nghiệm \(x_1,x_2\), hãy tính tổng S và tích P của hai nghiệm theo m
c) Tìm hệ thức giữa S và P sao cho trong hệ thức này không có m
Vì phương trình đã cho là phương trình bậc hai nên để pt đã cho có nghiệm buộc \(\Delta\)'\(\ge\)0
\(\Leftrightarrow\left(-m-4\right)^2-\left(2m-1\right)\left(5m+2\right)\ge0\)
\(\Leftrightarrow-9m^2+9m+17\ge0\)
Tới đây mình bấm máy tính fx 570vn thì ra còn ai rảnh thì xài bảng xét dấu
\(\Leftrightarrow\dfrac{3-\sqrt{77}}{6}\le m\le\dfrac{3+\sqrt{77}}{6}\)
Vậy với .....
b, Theo hệ thức Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{2\left(m+4\right)}{2m-1}\\P=x_1.x_2=\dfrac{c}{a}=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
c,Từ \(S=\dfrac{2m+8}{2m-1}\Leftrightarrow S=1+\dfrac{9}{2m-1}\\ \Leftrightarrow\left(S-1\right)\left(2m-1\right)=9\\ \Leftrightarrow2m-1=\dfrac{9}{S-1}\\ \Leftrightarrow m=\dfrac{S+8}{2S-2}\)
Thay \(m=\dfrac{S+8}{2S-2}\) vào \(P=\dfrac{5m+2}{2m-1}\) ta được:
\(P=\dfrac{7S+6}{18}\)
\(\Leftrightarrow18P=7S+6\)
Hay \(18x_1x_2=x_1+x_2+6\)
Vậy ....
Trả lời bởi Trần Quang Đài
Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0
Trả lời bởi Huy Hoàng Nguyễn