Bài 6: Hệ thức Vi-et và ứng dụng

SK

Dùng định lí Vi - ét, hãy chứng tỏ rằng nếu tam thức \(ax^2+bx+c\) có hai nghiệm \(x_1,x_2\) thì nó được phân tích thành :

              \(ax^2+bx+c=a\left(x-x_1\right)\left(x-x_2\right)\)

Áp dụng :

Phân tích các tam thức sau thành tích :

a) \(x^2-11+30\)

b) \(3x^2+14x+8\)

c) \(5x^2+8x-4\)

d) \(x^2-\left(1+2\sqrt{3}\right)x-3+\sqrt{3}\)

HN
13 tháng 5 2017 lúc 17:20

ax2+bx+c=a(x2+\(\dfrac{b}{a}\)x+\(\dfrac{c}{a}\))
=a(x2-(x1+x2)x+x1x2)
=a(x-x1)(x-x2)

Áp dụng:
Câu a: Ptr có 2 nghiệm là 5,6=>x2-11x+30=(x-5)(x-6)
Câu b: Ptr có 2 nghiệm là \(\dfrac{-2}{3}\),-4=>3x2+14x+8=3(x+\(\dfrac{2}{3}\))(x+4)
Câu c: Ptr có 2 nghiệm là \(\dfrac{2}{5}\),-2=>5x2+8x-4=5(x-\(\dfrac{2}{5}\))(x+2)
Câu d: Ptr có 2 nghiệm là 3+\(\sqrt{3}\),-2+\(\sqrt{3}\)=>
x2-(1+2\(\sqrt{3}\))x-3+\(\sqrt{3}\)=(x-3-\(\sqrt{3}\))(x+2-\(\sqrt{3}\))

Bình luận (0)
NH
21 tháng 6 2017 lúc 10:35

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
KG
Xem chi tiết
TT
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết