Cho điểm \(M\left(1;-1;2\right)\) và mặt phẳng \(\left(\alpha\right):2x-y+2z+12=0\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (\(\alpha\))
Cho điểm \(M\left(1;-1;2\right)\) và mặt phẳng \(\left(\alpha\right):2x-y+2z+12=0\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng (\(\alpha\))
Cho hai đường thẳng :
\(d:\dfrac{x-1}{-1}=\dfrac{y-2}{2}=\dfrac{z}{3}\) và \(d:\left\{{}\begin{matrix}x=1+t'\\y=3-2t'\\z=1\end{matrix}\right.\)
Lập phương trình đường vuông góc chung của d và d' ?
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA' và DD' ?
Cho mặt phẳng \(\left(\alpha\right):2x+y+z-1=0\) và đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z+2}{-3}\)
Gọi M là giao điểm của d và \(\left(\alpha\right)\), hãy viết phương trình của đường thẳng \(\Delta\) đi qua M vuông góc với d và nằm trong \(\left(\alpha\right)\) ?
Cho hai đường thẳng :
\(d_1:\dfrac{x-1}{2}=\dfrac{y+2}{-3}=\dfrac{z-5}{4}\)
\(d_2:\left\{{}\begin{matrix}x=5+3t\\y=2+2t\\z=1-2t\end{matrix}\right.\)
a) Chứng minh rằng \(d_1\) và \(d_2\) cùng nằm trong một mặt phẳng \(\left(\alpha\right)\) ?
b) Viết phương trình của \(\left(\alpha\right)\) ?