Cho điểm \(M\left(1;4;2\right)\) và mặt phẳng \(\left(\alpha\right):x+y+z-1=0\) :
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ điểm M đến mặt phẳng \(\left(\alpha\right)\)
Cho mặt phẳng \(\left(\alpha\right):2x+y+z-1=0\) và đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z+2}{-3}\)
Gọi M là giao điểm của d và \(\left(\alpha\right)\), hãy viết phương trình của đường thẳng \(\Delta\) đi qua M vuông góc với d và nằm trong \(\left(\alpha\right)\) ?
Cho điểm \(M\left(2;-1;1\right)\) và đường thẳng \(\Delta:\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{2}\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta\)
b) Tìm tọa độ điểm M' đối xứng với M qua đường thẳng \(\Delta\)
Cho điểm \(A\left(1;0;0\right)\) và đường thẳng \(\Delta:\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=t\end{matrix}\right.\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng \(\Delta\) ?
b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng \(\Delta\) ?
Tìm số giao điểm của đường thẳng d với mặt phẳng \(\left(\alpha\right)\) trong các trường hợp sau :
a) \(d:\left\{{}\begin{matrix}x=12+4t\\y=9+3t\\z=1+t\end{matrix}\right.\) và \(\left(\alpha\right):3x+5y-z-2=0\)
b) \(d:\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=1+2t\end{matrix}\right.\) và \(\left(\alpha\right):x+3y+z+1=0\)
c) \(d:\left\{{}\begin{matrix}x=1+t\\y=1+2t\\z=2-3t\end{matrix}\right.\) và \(\left(\alpha\right):x+y+z-4=0\)
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau :
a) d đi qua điểm \(M\left(5;4;1\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(2;-3;1\right)\)
b) d đi qua điểm \(A\left(2;-1;3\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right)\) có phương trình \(x+y-z+5=0\)
c) d đi qua điểm \(B\left(2;0;-3\right)\) và song song với đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1+2t\\y=-3+3t\\z=4t\end{matrix}\right.\)
d) d đi qua 2 điểm \(P\left(1;2;3\right)\) và \(Q\left(5;4;4\right)\)
Trong không gian Oxyz, viết phương trình đường thẳng :
a) Qua điểm A (1;2-1) và vuông góc với mặt phẳng (P) : 3x - 2y + 2z + 1 = 0
b) Qua điểm A(1;-2;3) và song song với hai mặt phẳng (P) : x + y + z + 1 = 0, (P') : x - y + z - 2 = 0
c) Qua điểm M(-1;1;3) và vuông góc với hai đường thẳng Δ : x-1/3 = y+3/2 = z-1/1 , Δ' : x+1/1 = y/3 = z/-2
Viết phương trình tham số, phương trình chính tắc của đường thẳng \(\Delta\) trong các trường hợp sau :
a) \(\Delta\) đi qua điểm \(A\left(1;2;3\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(3;3;1\right)\)
b) \(\Delta\) đi qua điểm \(B\left(1;0;-1\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right):2x-y+z+9=0\)
c) \(\Delta\) đi qua điểm \(C\left(1;2;3\right)\) và \(D\left(2;1;4\right)\)
Cho đường thẳng \(\Delta:\dfrac{x+3}{2}=\dfrac{y+1}{3}=\dfrac{z+1}{2}\) và mặt phẳng \(\left(\alpha\right):2x-2y+x+3=0\)
a) Chứng minh rằng \(\Delta\) song song với \(\left(\alpha\right)\)
b) Tính khoảng cách giữa \(\Delta\) và \(\left(\alpha\right)\)