Giải các phương trình :
a) \(7x^2-5x=0\)
b) \(-\sqrt{2}x^2+6x=0\)
c) \(3,4x^2+8,2x=0\)
d) \(-\dfrac{2}{5}x^2-\dfrac{7}{3}x=0\)
Giải các phương trình :
a) \(7x^2-5x=0\)
b) \(-\sqrt{2}x^2+6x=0\)
c) \(3,4x^2+8,2x=0\)
d) \(-\dfrac{2}{5}x^2-\dfrac{7}{3}x=0\)
Giải các phương trình :
a) \(\left(x-3\right)^2=4\)
b) \(\left(\dfrac{1}{2}-x\right)^2-3=0\)
c) \(\left(2x-\sqrt{2}\right)^2-8=0\)
d) \(\left(2,1x-1,2\right)^2-0,25=0\)
Nhận thấy rằng phương trình tích \(\left(x+2\right)\left(x-3\right)=0\) hay phương trình bậc hai \(x^2-x-6=0\) có hai nghiệm là \(x_1=-2,x_2=3\). Tương tự, hãy lập những phương trình bậc hai mà nghiệm của mỗi phương trình là một trong những cặp số sau :
a) \(x_1=2,x_2=5\)
b) \(x_1=-\dfrac{1}{2},x_2=3\)
c) \(x_1=0,1,x_2=0,2\)
d) \(x_1=1-\sqrt{2},x_2=1+\sqrt{2}\)
Giải các phương trình :
a) \(5x^2-20=0\)
b) \(-3x^2+15=0\)
c) \(1,2x^2-0,192=0\)
d) \(1172,5x^2+42,18=0\)
a: \(\Leftrightarrow5x^2=20\)
=>x=2 hoặc x=-2
b: \(\Leftrightarrow-3x^2=-15\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
c: \(\Leftrightarrow1,2x^2=0,192\)
\(\Leftrightarrow x^2=\dfrac{4}{25}\)
=>x=2/5 hoặc x=-2/5
d: \(\Leftrightarrow1172,5x^2=-42,18\)(vô lý)
Trả lời bởi Nguyễn Lê Phước ThịnhGiải các phương trình sau bằng cách biến đổi thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số :
a) \(x^2-6x+5=0\)
b) \(x^2-3x-7=0\)
c) \(3x^2-12x+1=0\)
d) \(3x^2-6x+5=0\)
Đưa các phương trình sau về dạng \(ax^2+bx+c=0\) và xác định các hệ số a, b, c :
a) \(4x^2+2x=5x-7\)
b) \(5x-3+\sqrt{5}x^2=3x-4+x^2\)
c) \(mx^2-3x+5=x^2-mx\)
d) \(x+m^2x^2+m=x^2+mx+m+2\)
a: \(\Leftrightarrow4x^2-3x+7=0\)
a=4; b=-3; c=7
b: \(\Leftrightarrow\sqrt{5}x^2-x^2+5x-3-3x+4=0\)
\(\Leftrightarrow x^2\cdot\left(\sqrt{5}-1\right)+2x+1=0\)
\(a=\sqrt{5}-1;b=2;c=1\)
c: \(\Leftrightarrow mx^2-x^2-3x+mx+5=0\)
\(\Leftrightarrow x^2\left(m-1\right)+x\left(m-3\right)+5=0\)
a=m-1; b=m-3; c=5
d: \(\Leftrightarrow m^2x^2-x^2+x+m-mx-m-2=0\)
\(\Leftrightarrow x^2\left(m^2-1\right)+x\left(1-m\right)-2=0\)
\(a=m^2-1;b=1-m;c=-2\)
Trả lời bởi Nguyễn Lê Phước ThịnhTìm b, c để phương trình \(x^2+bx+c=0\) có hai nghiệm là những số dưới đây :
a) \(x_1=-12,x_2=2\)
b) \(x_1=-5,x_2=0\)
c) \(x_1=1+\sqrt{2},x_2=1-\sqrt{2}\)
d) \(x_1=3,x_2=-\dfrac{1}{2}\)
a: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=10\\c=-24\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=-1\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}x_1+x_2=3-\dfrac{1}{2}=\dfrac{5}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)
Trả lời bởi Nguyễn Lê Phước ThịnhTìm a, b, c để phương trình \(ax^2+bx+c=0\) có hai nghiệm \(x_1=-2\) và \(x_2=3\)
Có thể tìm được bao nhiêu bộ ba số a, b, c thỏa mãn yêu cầu của bài toán ?
Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số :
a) \(x^2-3x+1=0\)
b) \(x^2+\sqrt{2}x-1=0\)
c) \(5x^2-7x+1=0\)
d) \(3x^2+2\sqrt{3}x-2=0\)
a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)
=>(x-3/2)2=5/4
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)
b: \(x^2+\sqrt{2}x-1=0\)
nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
c: \(5x^2-7x+1=0\)
\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)
\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)
hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)
Trả lời bởi Nguyễn Lê Phước ThịnhHãy giải phương trình: 2x2 + 5x + 2 = 0 theo các bước như ví dụ 3 trong bài học.
Bài giải
2x2 + 5x + 2 = 0 ⇔ 2x2 + 5x = -2 ⇔ x2 + x = -1
⇔ x2 + 2 . x . + = -1 + ⇔ (x + )2 =
=> x + = => x =
Hoặc x + = => x = -2.
a: =>x(7x-5)=0
=>x=0 hoặc x=5/7
b: \(\Leftrightarrow\sqrt{2}x^2-6x=0\)
\(\Leftrightarrow x\left(\sqrt{2}x-6\right)=0\)
hay \(x\in\left\{0;3\sqrt{2}\right\}\)
c: =>x(3,4x+8,2)=0
=>x=0 hoặc x=-82/34=-41/17
d: \(\Leftrightarrow x\left(\dfrac{2}{5}x+\dfrac{7}{3}\right)=0\)
=>x=0 hoặc x=-35/6
Trả lời bởi Nguyễn Lê Phước Thịnh