Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM.
Chứng minh rằng : \(AC< \dfrac{BE+BF}{2}\)
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM.
Chứng minh rằng : \(AC< \dfrac{BE+BF}{2}\)
Cho tam giác ABC cân tại A, điểm D nằm giữa B và C. Chứng minh rằng độ dài AD nhỏ hơn cạnh bên của tam giác ABC ?
Kẻ \(AH\perp BC\)
- Nếu D trùng H thì \(AD< AC\) vì \(AH< AC\) ( đường vuông góc nhỏ hơn đường xiên )
- Nếu D không trùng H, giả sử D nằm giữa H và C. Ta có: \(HD< HC\)
\(\Rightarrow AD< AC\) ( hình chiếu nhỏ hơn thì đường xiên nhỏ hơn )
Vậy AD nhỏ hơn cạnh bên của \(\Delta ABC\)
Trả lời bởi Ngô Thanh Sang
Cho hình 3 trong đó AB > AC.
Chứng minh rằng EB > EC ?
Ta có: AB > AC (gt)
Suy ra: HB > HC (đường xiên lớn hơn có hình chiếu lớn hơn)
Suy ra: EB > EC (hình chiếu lớn hơn thì có đường xiên lớn hơn)
Trả lời bởi Hồng QuangCho hình 4, chứng minh rằng :
\(BD+CE< AB+AC\)
Xét ΔADB vuông tại D có BD<AB
Xét ΔAEC vuông tại E có CE<AC
Do đó: BD+CE<AB+AC
Trả lời bởi Nguyễn Lê Phước ThịnhCho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai ?
(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d
(B) Có duy nhất một đường xiên kẻ từ điểm A đến đường thẳng d
(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d
(D) Có vô số đường xiên kẻ từ điểm A đến đường d
Hãy vẽ hình minh hoạ cho các khẳng định đúng ?
Qua điểm A không thuộc đường thẳng d, kẻ đường vuông góc AH và các đường xiên AB, AC đến đường thẳng d (H, B, C đều thuộc d). Biết rằng HB < HC. Hãy chọn khẳng định đúng trong các khẳng định sau :
(A) AB > AC (B) AB = AC
(C) AB < AC (D) AH > AB
Theo định lí so sánh giữa hình chiếu và đường xiên ta có:
\(HB< HC\Rightarrow AB< AC.\)
Vậy nên chọn đáp án C
Trả lời bởi Ngô Thanh Sanga) Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', AC > A'C'. Không sử dụng định lí Pitago, chứng minh rằng BC > B'C'
b) Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', BC > B'C'. Không sử dụng định lí Pitago, chứng minh rằng AC > A'C'
a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.
Ta có ΔABC1=ΔA'B'C'
Suy ra B′C′=BC1
Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.
Vì AC > AC1 nên BC > BC1.
Suy ra BC > B'C'.
b:
-Giả sử AC<A'C'.
Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).
Suy ra BC=B'C'.
Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.
Trả lời bởi Nguyễn Lê Phước ThịnhCho tam giác ABC vuông tại A. Gọi BD là đường phân giác của góc B ( \(D\in AC\)). Chứng minh rằng BD < BC ?
Vì BD là tia phân giác \(\widehat{ABC}\)
=> BD nằm giữa BA và BC
=> điểm D nằm giữa A và C hay AD < AC
AC là hình chiếu của đường xiên BC
AD là hình chiếu của đường xiên BD
mà AD < AC
=> BC < BD
Trả lời bởi Lê Vương Kim AnhCho điểm A nằm ngoài đường thẳng xy
a) Tìm trên đường thẳng xy hai điểm M, N sao cho hai đường xiên AM và AN bằng nhau ?
b) Lấy một điểm D trên đường thẳng xy. Chứng minh rằng :
- Nếu D ở giữa M và N thì AD < AM
- Nếu D không thuộc đoạn thẳng MN thì AD > AM
a: Chỉ cần lấy M,N thuộc hai tia đối nhau Ox và Oy sao cho OM=ON(O là chân đường cao kẻ A xuống xy) thì ta được hai đường xiên AM=AN
b:
Trường hợp 1: D trùng với H thì AD=AH
=>AD>AM
Trường hợp 2: D nằm giữa M và H
=>HD<HM
=>AD<AM(hình chiếu, đường xiên)
Trường hợp 3: D nằm giữa H và N
=>HD<HN
=>AD<AN
mà AM=AN
nên AD<AM
Trả lời bởi Nguyễn Lê Phước ThịnhCho điểm P nằm ngoài đường thẳng d
a) Hãy nêu cách vẽ hai đường xiên PQ, PR sao cho PQ = PR và \(\widehat{QPR}=60^0\)
b) Trong hình dựng được ở câu a), cho PQ = 18 cm. Tính độ dài hình chiếu của hai đường xiên PQ, PR trên d
\(\Delta ABM\) vuông tại \(A\Rightarrow AB< BM\)
Do đó: \(AB< BE+ME\) __(1)__
Và \(AB< BF-MF\) __(2)__
\(\Delta MAE=\Delta MCF\) ( cạnh huyền - góc nhọn )
\(\Rightarrow ME=MF\) __(3)__
Từ (1),(2),(3) suy ra:
\(AB+AB< BE+BF\)
Do đó
\(2AB< BE+BF\) nên \(AB< \dfrac{BE+BF}{2}\)