Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

QL
Hướng dẫn giải Thảo luận (1)

a) Giá trị lớn nhất của đồ thị hàm số trên đoạn \(\left[ {0;3} \right]\) là \(M = 3\).

Với \({x_0} = 3\) thì \(f\left( 3 \right) = 3\).

b) Giá trị nhỏ nhất của đồ thị hàm số trên đoạn \(\left[ {0;3} \right]\) là \(m =  - 1\).

Với \({x_0} = 1\) thì \(f\left( 1 \right) =  - 1\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Tập xác định của hàm số là \(\left[ {0;2} \right]\).

Với \(x \in \left[ {0;2} \right]\) ta có: \(y' = \frac{{\left( {2x - {x^2}} \right)'}}{{2\sqrt {2x - {x^2}} }} = \frac{{ - x + 1}}{{\sqrt {2x - {x^2}} }}\), \(y' = 0 \Leftrightarrow \frac{{ - x + 1}}{{\sqrt {2x - {x^2}} }} = 0 \Leftrightarrow x = 1\left( {tm} \right)\)

Lập bảng biến thiên của hàm số trên đoạn \(\left[ {0;2} \right]\):

Từ bảng biến thiên ta thấy: \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = f\left( 2 \right) = 0,\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 1 \right) = 1\).

b) Với \(x \in \left( {1; + \infty } \right)\) ta có:

Ta có: \(y' =  - 1 + \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} < 0\;\forall x \in \left( {1; + \infty } \right)\)

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - x + \frac{1}{{x - 1}}} \right) =  + \infty ;\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - x + \frac{1}{{x - 1}}} \right) =  - \infty \)

Lập bảng biến thiên của hàm số trên \(\left( {1; + \infty } \right)\):

Vậy hàm số không có giá trị lớn nhất, giá trị nhỏ nhất trên \(\left( {1; + \infty } \right)\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Nhìn vào đồ thị ta thấy, trên đoạn \(\left[ { - 1;2} \right]\) ta có:

+ Giá trị lớn nhất của hàm số là \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 0 \right) = f\left( 2 \right) = 1\).

+ Giá trị nhỏ nhất của hàm số là \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) =  - 2\).

b) \(f'\left( x \right) = 3{x^2} - 4x,f'\left( x \right) = 0 \Leftrightarrow 3{x^2} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{4}{3}\end{array} \right.\)

Vậy \(x = 0,x = \frac{4}{3}\) thì \(f'\left( x \right) = 0\).

c) Ta có: \(f\left( 0 \right) = 1;f\left( {\frac{4}{3}} \right) = {\left( {\frac{4}{3}} \right)^3} - 2.{\left( {\frac{4}{3}} \right)^2} + 1 = \frac{{ - 5}}{{27}};f\left( { - 1} \right) = {\left( { - 1} \right)^3} - 2.{\left( { - 1} \right)^2} + 1 =  - 2\);

\(f\left( 2 \right) = {2^3} - {2.2^2} + 1 = 1\)

Do đó, số nhỏ nhất trong các giá trị này là \( - 2\), số lớn nhất trong các giá trị này là 1.

Ta thấy: \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = 1\), \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) =  - 2\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \(y' = 6{x^2} - 6x + 5 = 6\left( {{x^2} - x + \frac{5}{6}} \right) = 6{\left( {x - \frac{1}{2}} \right)^2} + \frac{7}{2} > 0\;\forall x \in \left[ {0;2} \right]\)

Do đó, hàm số \(y = 2{x^3} - 3{x^2} + 5x + 2\) đồng biến trên \(\left[ {0;2} \right]\).

Ta có: \(y\left( 0 \right) = 2;y\left( 2 \right) = {2.2^3} - {3.2^2} + 5.2 + 2 = 16\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 2 \right) = 16,\mathop {\min }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = 2\)

b) Ta có: \(y' = {e^{ - x}} - \left( {x + 1} \right){e^{ - x}} = {e^{ - x}}\left( {1 - x - 1} \right) =  - x.{e^{ - x}}\)

\(y' = 0 \Leftrightarrow  - x.{e^{ - x}} = 0 \Leftrightarrow x = 0\) (thỏa mãn \(x \in \left[ { - 1;1} \right]\))

\(y\left( { - 1} \right) = 0;y\left( 0 \right) = 1;y\left( 1 \right) = \frac{2}{e}\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( 0 \right) = 1,\mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = 0\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Với \(0 \le t \le 12\) ta có:

\(N'\left( t \right) =  - 3{t^2} + 24t,N'\left( t \right) = 0 \Leftrightarrow  - 3{t^2} + 24t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\left( {tm} \right)\\t = 8\left( {tm} \right)\end{array} \right.\)

Ta có: \(N\left( 0 \right) = 0,N\left( 8 \right) =  - {8^3} + {12.8^2} = 256,N\left( {12} \right) =  - {12^3} + {12.12^2} = 0\)

Do đó, số người tối đa bị nhiễm bệnh ở địa phương là 256 người trong 12 tuần đầu.

b) Hàm số biểu thị tốc độ độ lây lan của virus là: \(N'\left( t \right) =  - 3{t^2} + 24t\)

Đặt \(f\left( t \right) =  - 3{t^2} + 24t\), với \(0 \le t \le 12\)

Ta có: \(f'\left( t \right) =  - 6t + 24,f'\left( t \right) = 0 \Leftrightarrow t = 4\left( {tm} \right)\)

\(f\left( 0 \right) = 0,f\left( 4 \right) =  - {3.4^2} + 24.4 = 48,f\left( {12} \right) =  - {3.12^2} + 24.12 =  - 144\)

Do đó, virus sẽ lây lan nhanh nhất khi \(t = 4\) (tuần thứ 4).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \(y =  - {x^2} + 4x + 3 =  - {\left( {x - 2} \right)^2} + 7 \le 7\) với mọi số thực x.

Dấu “=” xảy ra khi \(x - 2 = 0 \Leftrightarrow x = 2\).

Do đó, \(\max f\left( x \right) = f\left( 2 \right) = 7\), hàm số không có giá trị nhỏ nhất.

b) GTLN, GTNN của \(y = {x^3} - 2{x^2} + 1\) trên \(\left[ {0; + \infty } \right)\)

Ta có: \(y' = 3{x^2} - 4x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {tm} \right)\\x = \frac{4}{3}\left( {tm} \right)\end{array} \right.\)

Bảng biến thiên:

Do đó, \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} y = y\left( {\frac{4}{3}} \right) = \frac{{ - 5}}{{27}}\), hàm số không có giá trị lớn nhất.

c) Ta có: \(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow x = 1 + \sqrt 2 \) (do \(x \in \left( {1; + \infty } \right)\))

Do đó, \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = y\left( {1 + \sqrt 2 } \right) = 2\sqrt 2 \), hàm số không có giá trị lớn nhất trên \(\left( {1; + \infty } \right)\).

d) Tập xác định của hàm số là: \(D = \left[ {0;2} \right]\)

\(y' = \frac{{\left( {4x - 2{x^2}} \right)'}}{{2\sqrt {4x - 2{x^2}} }} = \frac{{4 - 4x}}{{2\sqrt {4x - 2{x^2}} }} = \frac{{2\left( {1 - x} \right)}}{{\sqrt {4x - 2{x^2}} }}\)

\(y' = 0 \Leftrightarrow x = 1\left( {tm} \right)\)

\(y\left( 0 \right) = 0;y\left( 1 \right) = \sqrt 2 ;y\left( 2 \right) = 0\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 1 \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = y\left( 2 \right) = 0\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) \(y = {x^4} - 2{x^2} + 3\)

\(y' = 4{x^3} - 4x,y' = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\end{array} \right.\)

\(y\left( 0 \right) = 3;y\left( 1 \right) = y\left( { - 1} \right) = 2\)

Do đó, \(\mathop {\max }\limits_{\left( { - \infty ; + \infty } \right)} y = y\left( 0 \right) = 3,\mathop {\min }\limits_{\left( { - \infty ; + \infty } \right)} y = y\left( 1 \right) = y\left( { - 1} \right) = 2\)

b) Ta có: \(y' = {e^{ - x}} - x.{e^{ - x}},y' = 0 \Leftrightarrow {e^{ - x}} - x.{e^{ - x}} = 0 \Leftrightarrow {e^{ - x}}\left( {1 - x} \right) = 0 \Leftrightarrow x = 1\)

Bảng biến thiên:

Do đó, \(\mathop {\max }\limits_{\left( { - \infty ; + \infty } \right)} y = y\left( 1 \right) = \frac{1}{e}\), hàm số không có giá trị nhỏ nhất.

c) Tập xác định của hàm số là: \(D = \left( {0; + \infty } \right)\)

\(y' = \ln x + x.\frac{1}{x} = \ln x + 1,y' = 0 \Leftrightarrow \ln x + 1 = 0 \Leftrightarrow x = \frac{1}{e}\) (thỏa mãn)

Bảng biến thiên:

Hàm số không có giá trị lớn nhất, \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} y = y\left( {\frac{1}{e}} \right) = \frac{{ - 1}}{e}\)

d) Tập xác định của hàm số là \(\left[ {1;3} \right]\).

\(y' = \frac{1}{{2\sqrt {x - 1} }} - \frac{1}{{2\sqrt {3 - x} }},y' = 0 \Leftrightarrow \frac{1}{{2\sqrt {x - 1} }} - \frac{1}{{2\sqrt {3 - x} }} = 0 \Leftrightarrow \frac{{\sqrt {3 - x}  - \sqrt {x - 1} }}{{2\sqrt {3 - x} \sqrt {x - 1} }} = 0\)

\( \Leftrightarrow \sqrt {3 - x}  = \sqrt {x - 1}  \Leftrightarrow 3 - x = x - 1 \Leftrightarrow x = 2\left( {tm} \right)\)

\(y\left( 1 \right) = \sqrt 2 ;y\left( 2 \right) = 2;y\left( 3 \right) = \sqrt 2 \)

Do đó, \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = y\left( 2 \right) = 2,\mathop {\min }\limits_{\left[ {1;3} \right]} y = y\left( 1 \right) = y\left( 3 \right) = \sqrt 2 \)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Ta có: \(y' = 6{x^2} - 6,y' = 0 \Leftrightarrow 6{x^2} - 6 = 0 \Leftrightarrow x =  \pm 1\) (thỏa mãn)

\(y\left( { - 1} \right) = 7,y\left( 1 \right) =  - 1,y\left( 2 \right) = 7\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = y\left( 2 \right) = y\left( { - 1} \right) = 7,\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( 1 \right) =  - 1\)

b) Ta có: \(y' = 4{x^3} - 6x,y' = 0 \Leftrightarrow 4{x^3} - 6x = 0 \Leftrightarrow x = 0;x = \frac{{\sqrt 6 }}{2}\) (do \(x \in \left[ {0;3} \right]\))

\(y\left( 0 \right) = 2;y\left( {\frac{{\sqrt 6 }}{2}} \right) = \frac{{ - 1}}{4};y\left( 3 \right) = 56\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;3} \right]} y = y\left( 3 \right) = 56,\mathop {\min }\limits_{\left[ {0;3} \right]} y = y\left( {\frac{{\sqrt 6 }}{2}} \right) = \frac{{ - 1}}{4}\)

c) Ta có: \(y' = 1 - 2\cos 2x,y' = 0 \Leftrightarrow 1 - 2\cos 2x = 0 \Leftrightarrow \cos 2x = \frac{1}{2} \Leftrightarrow x =  \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Mà \(x \in \left[ {0;\pi } \right] \Rightarrow x = \frac{\pi }{6};x = \frac{{5\pi }}{6}\)

\(y\left( 0 \right) = 0;y\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2};y\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2};y\left( \pi  \right) = \pi \)

Do đó, \(\mathop {\max }\limits_{\left[ {0;\pi } \right]} y = y\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2},\mathop {\min }\limits_{\left[ {0;\pi } \right]} y = y\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2}\)

d) \(y' = \left( {2x - 1} \right){e^x} + \left( {{x^2} - x} \right){e^x} = {e^x}\left( {{x^2} + x - 1} \right)\)

\(y' = 0 \Leftrightarrow {e^x}\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow x = \frac{{ - 1 + \sqrt 5 }}{2}\) (do \(x \in \left[ {0;1} \right]\))

\(y\left( 0 \right) = 0;y\left( {\frac{{ - 1 + \sqrt 5 }}{2}} \right) = \left( {2 - \sqrt 5 } \right){e^{\frac{{ - 1 + \sqrt 5 }}{2}}};y\left( 1 \right) = 0\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;1} \right]} y = y\left( 0 \right) = y\left( 1 \right) = 0,\mathop {\min }\limits_{\left[ {0;1} \right]} y = y\left( {\frac{{ - 1 + \sqrt 5 }}{2}} \right) = \left( {2 - \sqrt 5 } \right){e^{\frac{{ - 1 + \sqrt 5 }}{2}}}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Gọi chiều dài của hình chữ nhật là x (cm, \(0 < x < 12\))

Chiều rộng của hình chữ nhật là \(12 - x\left( {cm} \right)\)

Diện tích của hình chữ nhật là: \(x\left( {12 - x} \right) =  - {x^2} + 12x\;\left( {c{m^2}} \right)\)

Đặt \(S\left( x \right) =  - {x^2} + 12x,x \in \left( {0;12} \right)\)

\(S'\left( x \right) =  - 2x + 12,S'\left( x \right) = 0 \Leftrightarrow x = 6\left( {tm} \right)\)

Bảng biến thiên: 

Do đó, trong các hình có cùng chu vi thì hình chữ nhật có diện tích lớn nhất là \(36c{m^2}\).

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Hình hộp trên có độ dài cạnh đáy là x (cm, \(x > 0\)) và chiều cao là h (cm, \(h > 0\))

Diện tích bề mặt của hình hộp là \(108c{m^2}\) nên \({x^2} + 4xh = 108 \Rightarrow h = \frac{{108 - {x^2}}}{{4x}}\left( {cm} \right)\)

Thể tích của hình hộp là: \(V = {x^2}.h = {x^2}.\frac{{108 - {x^2}}}{{4x}} = \frac{{108x - {x^3}}}{4}\left( {c{m^3}} \right)\)

Ta có: \(V' = \frac{{ - 3{x^2} + 108}}{4},V' = 0 \Leftrightarrow x = 6\) (do \(x > 0\))

Bảng biến thiên:

Do đó, thể tích của hình hộp là lớn nhất khi độ dài cạnh đáy \(x = 6\)cm

Khi đó, chiều cao của hình hộp là: \(\frac{{108 - {6^2}}}{{4.6}} = 3\left( {cm} \right)\).

Trả lời bởi Hà Quang Minh