a) Ta có: \(y = - {x^2} + 4x + 3 = - {\left( {x - 2} \right)^2} + 7 \le 7\) với mọi số thực x.
Dấu “=” xảy ra khi \(x - 2 = 0 \Leftrightarrow x = 2\).
Do đó, \(\max f\left( x \right) = f\left( 2 \right) = 7\), hàm số không có giá trị nhỏ nhất.
b) GTLN, GTNN của \(y = {x^3} - 2{x^2} + 1\) trên \(\left[ {0; + \infty } \right)\)
Ta có: \(y' = 3{x^2} - 4x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {tm} \right)\\x = \frac{4}{3}\left( {tm} \right)\end{array} \right.\)
Bảng biến thiên:
Do đó, \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} y = y\left( {\frac{4}{3}} \right) = \frac{{ - 5}}{{27}}\), hàm số không có giá trị lớn nhất.
c) Ta có: \(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 1}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow x = 1 + \sqrt 2 \) (do \(x \in \left( {1; + \infty } \right)\))
Do đó, \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = y\left( {1 + \sqrt 2 } \right) = 2\sqrt 2 \), hàm số không có giá trị lớn nhất trên \(\left( {1; + \infty } \right)\).
d) Tập xác định của hàm số là: \(D = \left[ {0;2} \right]\)
\(y' = \frac{{\left( {4x - 2{x^2}} \right)'}}{{2\sqrt {4x - 2{x^2}} }} = \frac{{4 - 4x}}{{2\sqrt {4x - 2{x^2}} }} = \frac{{2\left( {1 - x} \right)}}{{\sqrt {4x - 2{x^2}} }}\)
\(y' = 0 \Leftrightarrow x = 1\left( {tm} \right)\)
\(y\left( 0 \right) = 0;y\left( 1 \right) = \sqrt 2 ;y\left( 2 \right) = 0\)
Do đó, \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 1 \right) = \sqrt 2 ,\mathop {\min }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = y\left( 2 \right) = 0\)