Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

QL

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) \(y = \sqrt {2x - {x^2}} \); 

b) \(y =  - x + \frac{1}{{x - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\).

HM
26 tháng 3 2024 lúc 4:36

a) Tập xác định của hàm số là \(\left[ {0;2} \right]\).

Với \(x \in \left[ {0;2} \right]\) ta có: \(y' = \frac{{\left( {2x - {x^2}} \right)'}}{{2\sqrt {2x - {x^2}} }} = \frac{{ - x + 1}}{{\sqrt {2x - {x^2}} }}\), \(y' = 0 \Leftrightarrow \frac{{ - x + 1}}{{\sqrt {2x - {x^2}} }} = 0 \Leftrightarrow x = 1\left( {tm} \right)\)

Lập bảng biến thiên của hàm số trên đoạn \(\left[ {0;2} \right]\):

Từ bảng biến thiên ta thấy: \(\mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = f\left( 2 \right) = 0,\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 1 \right) = 1\).

b) Với \(x \in \left( {1; + \infty } \right)\) ta có:

Ta có: \(y' =  - 1 + \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}} < 0\;\forall x \in \left( {1; + \infty } \right)\)

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - x + \frac{1}{{x - 1}}} \right) =  + \infty ;\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( { - x + \frac{1}{{x - 1}}} \right) =  - \infty \)

Lập bảng biến thiên của hàm số trên \(\left( {1; + \infty } \right)\):

Vậy hàm số không có giá trị lớn nhất, giá trị nhỏ nhất trên \(\left( {1; + \infty } \right)\).

Bình luận (0)