Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn

SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

Biện luận :

Tùy theo số giao điểm của d và đường tròn (O) là 2, 1, 0 mà bài toán có 2, 1, 0 nghiệm hình.

(Trên hình 89, bài toán có 2 nghiệm hình)

Trả lời bởi Nguyen Thuy Hoa
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Tham khảo:

Xét tam giác DEC có  

M là trung điểm DE

N là trung điểm DC

rightwards double arrow MN là đường trung bình của tam giác DEC, hay MN//EC (*) và MN=1/2 EC (1)

* Xét tam giác BEC có 

Q là trung điểm BE

P là trung điểm BC

rightwards double arrowPQ là đường trung bình của tam giác BEC, hay PQ//EC và PQ=1/2 EC (2).

Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành.

* Xét tam giác DEB có 

Q là trung điểm BE

M là trung điểm DE

rightwards double arrow QM là đường trung bình của tam giác BED, hay MQ//DB  (3).

Mà AB⊥AC (4)

Từ (1), (3) và (4) suy ra MN⊥MQ (5)

Tứ giác MNPQ là hình bình hành mà có một góc vuông rightwards double arrow MNPQ là hình chữ nhật.

Gọi I là giao điểm của hai đường chéo MP và QN

Suy ra IM=IN=IP=IQ (tính chất hình chữ nhật)

Nên các điểm M, N, P, Q đều cách đều I một khoảng cố định

rightwards double arrow M, N, P, Q cùng thuộc một đường tròn.

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)