Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điển \(A\left(1;-1\right),B\left(-\sqrt{2};\sqrt{2}\right)\) và \(C\left(1;1\right)\) đối với đường tròn (O; 2) ?
Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điển \(A\left(1;-1\right),B\left(-\sqrt{2};\sqrt{2}\right)\) và \(C\left(1;1\right)\) đối với đường tròn (O; 2) ?
Hãy nỗi mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng :
Cho góc nhọn xOy và hai điểm D, E thuộc tia Oy. Dựng đường tròn tâm M đi qua D và E sao cho tâm M nằm trên tia Ox ?
* Phân tích
Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.
− Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A.
− Tâm I nằm trên tia Oy nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A.
* Cách dựng
− Dựng đường vuông góc với Ox tại A cắt Oy tại I.
− Dựng đường tròn (I; IA).
* Chứng minh
Ta có: I thuộc Oy, OA ⊥ IA tại A.
Suy ra Ox là tiếp tuyến của đường tròn ( I;IA)
hay (I; IA) tiếp xúc với Ox.
* Biện luận
Vì góc xOy là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.
Trong các câu sau, câu nào đúng ? Câu nào sai ?
a) Hai đường tròn phân biệt có thể có hai điểm chung
b) Hai đường tròn phân biệt có thể có ba điểm chung phân biệt
c) Tâm của đường tròn ngoại tiếp một tam giác bao giờ cũng nằm trong tam giác ấy
Câu 5 trang 156 Sách Bài Tập (SBT) Toán 9 Tập 1.
a) Đúng
b) Sai vì hai đường tròn có ba điểm chung phân biệt thì chúng trùng nhau.
c) Sai vì tam giác vuông có tâm đường tròn ngoại tiếp nằm trên cạnh huyền, tam giác tù giao điểm của ba đường trung trực nằm ngoài tam giác.
a) Quan sát hình lọ hoa trên giấy kẻ ô vuông (h.71) rồi vẽ lại hình đó
b) Quan sát các đường xoắn ốc trên hình 72 rồi vẽ lại. Tính bán kính của các cung tròn tâm B, C, D, A biết cạnh hình vuông ABCD bằng 1 đơn vị dài.
b) Hình b
Cung tròn tâm B có bán kính bằng 1.
Cung tròn tâm C có bán kính bằng 2.
Cung tròn tâm D có bán kính bằng 3.
Cung tròn tâm A có bán kính bằng 4.
Trả lời bởi Nguyễn Lê Phước ThịnhHình 73
Có một chi tiết máy (mà đường viền ngoài là đường tròn) bị gãy. Làm thế nào để xác định được bán kính của đường viền ?
Cho hình vuông ABCD, O là giao điểm của hai đường chéo, \(OA=\sqrt{2}\), Vẽ đường tròn tâm A bán kính 2cm. Trong năm điểm A, B, C, D, O, điểm nào nằm trên đường tròn ? Điểm nào nằm trong đường tròn ? Điểm nào nằm ngoài đường tròn ?
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt các cạnh AB, AC theo thứ tự ở D, E
a) Chứng minh rằng \(CD\perp AB,BE\perp AC\)
b) Gọi K là giao điểm của BE, CD. Chứng minh rằng AK vuông góc với BC
Cho tam giác đều ABC cạnh bằng 3cm. Bán kính của đường tròn ngoại tiếp tam giác ABC bằng :
(A) \(2\sqrt{3}cm\) (B) 2cm (C) \(\sqrt{3}cm\) (D) \(\sqrt{2}cm\)
Hãy chọn câu trả lời đúng ?
Cho hình vuông ABCD
a) Chứng minh rằng bốn đỉnh của hình vuông cùng nằm trên một đường tròn. Hãy chỉ ra vị trí của tâm đường tròn đó ?
b) Tính bán kính của đường tròn đó, biết cạnh của hình vuông bằng 2 dm ?