Trong các cặp hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại ?
a) \(e^{-x}\) và \(-e^{-x}\)
b) \(\sin2x\) và \(\sin^2x\)
c) \(\left(1-\dfrac{2}{x}\right)^2e^x\) và \(\left(1-\dfrac{4}{x}\right)e^x\)
Trong các cặp hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại ?
a) \(e^{-x}\) và \(-e^{-x}\)
b) \(\sin2x\) và \(\sin^2x\)
c) \(\left(1-\dfrac{2}{x}\right)^2e^x\) và \(\left(1-\dfrac{4}{x}\right)e^x\)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\dfrac{x+\sqrt{x}+1}{\sqrt[3]{x}}\)
b) \(f\left(x\right)=\dfrac{2^x-1}{e^x}\)
c) \(f\left(x\right)=\dfrac{1}{\sin^2x.\cos^2x}\)
d) \(f\left(x\right)=\sin5x.\cos3x\)
e) \(f\left(x\right)=\tan^2x\)
g) \(f\left(x\right)=e^{3-2x}\)
h) \(f\left(x\right)=\dfrac{1}{\left(1+x\right)\left(1-2x\right)}\)
a) Điều kiện x>0. Thực hiện chia tử cho mẫu ta được:
f(x) = = =
∫f(x)dx = ∫()dx = +C
b) Ta có f(x) = = -e-x
; do đó nguyên hàm của f(x) là:
F(x)= == + C
c) Ta có f(x) =
hoặc f(x) =
Do đó nguyên hàm của f(x) là F(x)= -2cot2x + C
d) Áp dụng công thức biến tích thành tổng:
f(x) =sin5xcos3x = (sin8x +sin2x).
Vậy nguyên hàm của hàm số f(x) là F(x) = -(cos8x + cos2x) +C
e) ta có
vậy nguyên hàm của hàm số f(x) là F(x) = tanx - x + C
g) Ta có ∫e3-2xdx= -∫e3-2xd(3-2x)= -e3-2x +C
h) Ta có :
= =
Trả lời bởi Linh Nguyễn
Sử dụng phương pháp biến đổi số, hãy tính :
a) \(\int\left(1-x\right)^9dx\) (đặt \(u=1-x\))
b) \(\int x\left(1+x^2\right)^{\dfrac{2}{3}}dx\) (đặt \(u=1+x^2\))
c) \(\int\cos^3x\sin x.dx\) (đặt \(t=\cos x\))
d) \(\int\dfrac{dx}{e^x+e^{-x}+2}\) (đặt \(u=e^x+1\))
Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int x\ln\left(1+x\right)dx\)
b) \(\int\left(x^2+2x-1\right)e^xdx\)
c) \(\int x\sin\left(2x+1\right)dx\)
d) \(\int\left(1-x\right)\cos xdx\)
a) Áp dụng phương pháp tìm nguyên hàm từng phần:
Đặt u= ln(1+x)
dv= xdx
=> ,
Ta có: ∫xln(1+x)dx =
=
b) Cách 1: Tìm nguyên hàm từng phần hai lần:
Đặt u= (x2+2x -1) và dv=exdx
Suy ra du = (2x+2)dx, v = ex
. Khi đó:
∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx
Đặt : u=2x+2; dv=exdx
=> du = 2dx ;v=ex
Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C
Vậy
∫(x2+2x+1)exdx = ex(x2-1) + C
Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.
Đáp số : ex(x2-1) + C
c) Đáp số:
HD: Đặt u=x ; dv = sin(2x+1)dx
d) Đáp số : (1-x)sinx - cosx +C.
HD: Đặt u = 1 - x ;dv = cosxdx
Trả lời bởi Linh Nguyễn
Kiểm tra xem hàm số nào là một nguyên hàm của hàm số còn lại trong mỗi cặp số sau :
a) \(f\left(x\right)=\ln\left(x+\sqrt{1+x^2}\right)\) và \(g\left(x\right)=\dfrac{1}{\sqrt{1+x^2}}\)
b) \(f\left(x\right)=e^{\sin x}\cos x\) và \(g\left(x\right)=e^{\sin x}\)
c) \(f\left(x\right)=\sin^2\dfrac{1}{x}\) và \(g\left(x\right)=-\dfrac{1}{x^2}\sin\dfrac{2}{x}\)
d) \(f\left(x\right)=\dfrac{x-1}{\sqrt{x^2-2x+2}}\) và \(g\left(x\right)=\sqrt{x^2-2x+2}\)
e) \(f\left(x\right)=x^2e^{\dfrac{1}{x}}\) và \(g\left(x\right)=\left(2x-2\right)e^{\dfrac{1}{x}}\)
Chứng minh rằng các hàm số \(F\left(x\right)\) và \(G\left(x\right)\) sau đều là một nguyên hàm của cùng một hàm số :
a) \(F\left(x\right)=\dfrac{x^2+6x+1}{2x-3}\) và \(G\left(x\right)=\dfrac{x^2+10}{2x-3}\)
b) \(F\left(x\right)=\dfrac{1}{\sin^2x}\) và \(G\left(x\right)=10+\cot^2x\)
c) \(F\left(x\right)=5+2\sin^2x\) và \(G\left(x\right)=1-\cos2x\)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\left(x-9\right)^4\)
b) \(f\left(x\right)=\dfrac{1}{\left(2-x\right)^2}\)
c) \(f\left(x\right)=\dfrac{x}{\sqrt{1-x^2}}\)
d) \(f\left(x\right)=\dfrac{1}{\sqrt{2x+1}}\)
e) \(f\left(x\right)=\dfrac{1-\cos2x}{\cos^2x}\)
g) \(f\left(x\right)=\dfrac{2x+1}{x^2+x+1}\)
Tính các nguyên hàm sau bằng phương pháp đổi biến số :
a) \(\int x^2\sqrt[3]{1+x^3}dx\) với \(x>-1\) (đặt \(t=1+x^3\))
b) \(\int xe^{-x^2}dx\) (đặt \(t=x^2\))
c) \(\int\dfrac{x}{\left(1+x^2\right)^2}dx\) (đặt \(t=1+x^2\))
d) \(\int\dfrac{1}{\left(1-x\right)\sqrt{x}}dx\) (đặt \(t=\sqrt{x}\))
e) \(\int\sin\dfrac{1}{x}.\dfrac{1}{x^2}dx\) (đặt \(t=\dfrac{1}{x}\))
g) \(\int\dfrac{\left(\ln x\right)^2}{x}dx\) (đặt \(t=\ln x\))
h) \(\int\dfrac{\sin x}{\sqrt[3]{\cos^2x}}dx\) (đặt \(t=\cos x\) )
i) \(\int\cos x\sin^3xdx\) (đặt \(t=\sin x\))
k) \(\int\dfrac{1}{e^x-e^{-x}}dx\) (đặt \(t=e^x\) )
l) \(\int\dfrac{\cos x+\sin x}{\sqrt{\sin x-\cos x}}dx\) (đặt \(t=\sin x-\cos x\))
Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int\left(1-2x\right)e^xdx\)
b) \(\int xe^{-x}dx\)
c) \(\int x\ln\left(1-x\right)dx\)
d) \(\int x\sin^2xdx\)
e) \(\int\ln\left(x+\sqrt{1+x^2}\right)dx\)
g) \(\int\sqrt{x}\ln^2xdx\)
h) \(\int x\ln\dfrac{1+x}{1-x}dx\)
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))