Bằng cách biến đổi các hàm số lượng giác, hãy tính :
a) \(\int\sin^4xdx\)
b) \(\int\dfrac{1}{\sin^3x}dx\)
c) \(\int\sin^3x\cos^4xdx\)
d) \(\int\sin^4x\cos^4xdx\)
e) \(\int\dfrac{1}{\cos x\sin^2x}dx\)
g) \(\int\dfrac{1+\sin x}{1+\cos x}dx\)
Bằng cách biến đổi các hàm số lượng giác, hãy tính :
a) \(\int\sin^4xdx\)
b) \(\int\dfrac{1}{\sin^3x}dx\)
c) \(\int\sin^3x\cos^4xdx\)
d) \(\int\sin^4x\cos^4xdx\)
e) \(\int\dfrac{1}{\cos x\sin^2x}dx\)
g) \(\int\dfrac{1+\sin x}{1+\cos x}dx\)
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số : \(f\left(x\right)=\dfrac{1}{1+\sin x}?\)
a) \(F\left(x\right)=1-\cos\left(\dfrac{\pi}{2}+\dfrac{\pi}{4}\right)\)
b) \(G\left(x\right)=2\tan\dfrac{x}{2}\)
c) \(H\left(x\right)=\ln\left(1+\sin x\right)\)
d) \(K\left(x\right)=2\left(1-\dfrac{1}{1+\tan\dfrac{x}{2}}\right)\)
Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?
a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)
b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)
c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)
d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)
\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)
\(=\dfrac{1}{1+\sin x}\)
Vậy hàm số K(x) là một nguyên hàm của f(x).
Trả lời bởi Giáo viên Toán
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
Trả lời bởi Giáo viên Toán