a)Tính giá trị biểu thức:p= \(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}\)
b)Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c =2b thì ta luôn có
\(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{a}+\sqrt{c}}\)
a)Rút gọn biểu thứcP=\((\dfrac{\sqrt{a-2}+2}{3})(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}):(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\)
b)Cho các số dương a,b thỏa mãn a+b=\(\sqrt{2017-a^2}+\sqrt{2017-b^2}.Chứng\) Minh \(a^2+b^2=2017\)
2 có nghĩa là xin chào
Cho hình vuông ABCD có hai đường chéo AC và BD cắt nhau tại O. Trên cạnh AB lấy M (0<MB<MA) và trên cạnh BC lấy N sao cho góc MON=90*. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE.
a)Chứng minh tam giác MON vuông cân.
b)Chứng minh MN // BE.
c)Chứng minh CK vuông góc với BE.
d) Qua K vẽ đường song song với OM cắt BC tại H .Chứng Minh KC/KB+KN/KH+CN/BH=1