Ta có:
`1/a+1/b+1/c=1/3=1/(a+b+c)`
`<=>(ab+bc+ca)/(abc)=1/(a+b+c)`
`<=>(a+b+c)(ab+bc+ca)=abc`
`<=>(a+b+c)(ab+bc+ca)-abc=0`
`<=>(a+b)(ab+bc+ca)+c(ab+bc+ca)-abc=0`
`<=>(a+b)(ab+bc+ca)+c(ab+bc+ca-ab)=0`
`<=>(a+b)(ab+bc+ca)+c(bc+ca)=0`
`<=>(a+b)(ab+bc+ca)+c^2(a+b)=0`
`<=>(a+b)(ab+bc+ca+c^2)=0`
`<=>(a+b)[b(a+c)+c(a+c)]=0`
`<=>(a+b)(a+c)(b+c)=0`
`<=>a=-b` hoặc `c=-a` hoặc `b=-c`
TH1: `a=-b=>T=(a^2025+b^2025)(...)=(a^2025-a^2025)(...)=0(..)=0`
TH2: `c=-a=>T=(c^2025+a^2025)(...)=(c^2025-c^2025)(...)=0(...)=0`
TH3: `b=-c=>T=(b^2025+c^2025)(...)=(b^2025-b^2025)(...)=0(...)=0`
Vậy `T=0`