\(A=\sqrt{65}-\sqrt{63}\)
\(\Rightarrow A=\dfrac{2}{\sqrt{65}+\sqrt{63}}\)
+) CM \(A< \dfrac{2}{15}\)
Ta có:\(\sqrt{65}+\sqrt{63}>8+7=15\)
\(\Rightarrow\dfrac{2}{\sqrt{65}+\sqrt{63}}< \dfrac{2}{15}\)
\(\Rightarrow A< \dfrac{2}{15}\)
+) CM \(A>\dfrac{1}{8}\)
Áp dụng BĐT \(\dfrac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\dfrac{a+b}{2}}\) với \(a,b\ge0\),ta có:
\(\dfrac{\sqrt{65}+\sqrt{63}}{2}< \sqrt{\dfrac{65+63}{2}}\)
\(\Leftrightarrow\dfrac{\sqrt{65}+\sqrt{63}}{2}< 8\)
\(\Leftrightarrow\sqrt{65}+\sqrt{63}< 16\)
\(\Rightarrow\dfrac{2}{\sqrt{65}+\sqrt{63}}>\dfrac{2}{16}=\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{1}{8}\)
Từ các điều trên suy ra \(\dfrac{1}{8}< A< \dfrac{2}{15}\)