Chứng minh:
x6-mx5+3x4-(6m+9)x3+3x2-mx+1 luôn có nghiệm.
Chứng minh:
x6-mx5+3x4-(6m+9)x3+3x2-mx+1 luôn có nghiệm.
Đề bài ko đúng em, với \(m=-1\) thì pt này vô nghiệm (hay chính xác hơn pt sẽ vô nghiệm với \(-\dfrac{17}{8}< m< -\dfrac{1}{8}\))
Ủa bài này rất quen mà có vấn đề gì đâu em?
Giả thiết suy ra \(f\left(2\right)=1\)
\(\dfrac{\sqrt[]{6f\left(x\right)+19}-5+\sqrt[4]{3f\left(x\right)+13}-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\dfrac{6\left[f\left(x\right)-1\right]}{x-2}.\dfrac{1}{\sqrt[]{6f\left(x\right)+19}+5}+\dfrac{3\left[f\left(x\right)-1\right]}{x-2}.\dfrac{1}{\left(\sqrt[4]{3f\left(x\right)+13}+2\right)\left(\sqrt[]{3f\left(x\right)+13}+4\right)}}{x+2}\)
\(=\dfrac{18.\dfrac{1}{\sqrt[]{6.1+19}+5}+9.\dfrac{1}{\left(\sqrt[4]{3+13}+2\right)\left(\sqrt[]{3+13}+4\right)}}{4}\)
Tổng cấp số nhân lùi vô hạn với \(u_1=3\) và \(q=-\dfrac{1}{\sqrt{3}}\)
Theo công thức: \(S=\dfrac{u_1}{1-q}=\dfrac{3}{1+\dfrac{1}{\sqrt{3}}}=...\)
Lim x tới âm vô cùng √4x^2+x +2x-1
Bạn nên gõ lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ tốt hơn bạn nhé.
\(\lim\limits_{x\rightarrow-\infty}\sqrt{4x^2+x}+2x-1\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{-x\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)
Tìm \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-4}+\sqrt{x+4}+2}{x-5}\)
Trình bài như một bài tự luận.
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{1}{x-1}-\dfrac{3}{x^3-1}\Leftrightarrow x>1\\mx+2\Leftrightarrow x\le1\end{matrix}\right.\)
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}x^2-x+3\Leftrightarrow x\le1\\\dfrac{x+m}{x}\Leftrightarrow x>1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1^-}x^2-x+3=1^2-1+3=3\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\dfrac{1+m}{1}=m+1\)
Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\)
\(\Leftrightarrow m+1=3\Leftrightarrow m=2\)
Vậy ...
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Leftrightarrow\lim\limits_{x\rightarrow1^+}\dfrac{x+m}{x}=\lim\limits_{x\rightarrow1^-}\left(x^2-x+3\right)\\ \Leftrightarrow m+1=3\Leftrightarrow m=2\)
Với giá trị nào của m thì hàm số sau có giới hạn x dần đến 1. Tìm giới hạn đó
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-1}{x-1}\Leftrightarrow x< 1\\mx+2\Leftrightarrow x\ge1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1^-}\dfrac{x^3-1}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}x^2+x+1=1^2+1+1=3\)
\(\lim\limits_{x\rightarrow1^+}mx+2=\lim\limits_{x\rightarrow1^+}m+2\)
Để tồn tại \(\lim\limits_{x\rightarrow1}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\)
\(\Leftrightarrow m+2=3\\ \Leftrightarrow m=1\)
Vậy ...