Viết phương trình dao động điều hòa của một vật có thời gian thực hiện một dao động là 0,5 C tại thời điểm ban đầu vật đó di qua vị trí cân bằng theo chiêù dương với vận tốc là 12 ( cm/s )
Viết phương trình dao động điều hòa của một vật có thời gian thực hiện một dao động là 0,5 C tại thời điểm ban đầu vật đó di qua vị trí cân bằng theo chiêù dương với vận tốc là 12 ( cm/s )
Phương trình dao động điều hòa của một vật có thời gian thực hiện một dao động là T, tại thời điểm ban đầu vật đó đi qua vị trí cân bằng theo chiều dương với vận tốc là v0 được mô tả bằng phương trình sau:
x(t) = A * cos(2πt/T + φ)
Trong đó:
x(t) là vị trí của vật tại thời điểm t (cm).A là biên độ của dao động (cm).t là thời gian (s).T là thời gian của một chu kỳ hoàn thành một dao động (s).φ là góc pha ban đầu (rad).Ứng với thông số trong câu hỏi:
A = 0,5 cm (biên độ).v0 = 12 cm/s (vận tốc ban đầu).T chưa được cung cấp.Để tìm giá trị của T, ta có thể sử dụng quan hệ giữa chu kỳ dao động và tần số dao động:
T = 1/f
Trong đó f là tần số dao động (Hz), có thể tính được từ vận tốc ban đầu:
f = v0 / (2πA)
Với v0 = 12 cm/s và A = 0,5 cm, ta có:
f = 12 / (2π * 0,5) ≈ 3,82 Hz
T = 1 / f ≈ 0,26 s
Vậy phương trình dao động điều hòa của vật trong trường hợp này là:
x(t) = 0,5 * cos(2πt/0,26 + φ)
Dạ mọi người giúp em 3 câu 4,5,6 gấp với ạ
Để tính quãng đường đi được từ thời điểm t1 đến t2 cho vật giao động điều hòa dọc theo trục Ox, ta cần tính diện tích dưới đường cong x(t) trong khoảng thời gian từ t1 đến t2.
Trước tiên, chúng ta sẽ tính x(t) tại t1 và t2:
Tại t1 = 13/6 s: x(t1) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm
Tại t2 = 23/6 s: x(t2) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm
Tiếp theo, chúng ta cần tính diện tích dưới đường cong trong khoảng từ t1 đến t2. Để làm điều này, ta sẽ tính diện tích của hình giữa đồ thị và trục Ox trong khoảng từ t1 đến t2.
Diện tích A = ∫(t1 đến t2) x(t) dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - (3.14 / 3))] dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt
A = ∫(13/6 đến 23/6) [3 * cos(12.56 - 1.0467)] dt
A = ∫(13/6 đến 23/6) [3 * cos(11.5133)] dt
Giải tích phần này trở nên phức tạp, nhưng bạn có thể tính toán nó bằng máy tính hoặc phần mềm tính toán. Kết quả sẽ là diện tích A, tức là quãng đường đi được từ t1 đến t2.
(em thay pi=3,14 luôn nha anh )
em gúp anh đc câu 6 chứ mấy câu kia lười quá;-;
Anh/chị giúp em bài này với ạ
Cho ptdđ x= -3cos(omega×t+ pi) (cm)
Hỏi biên độ dao động A=?;
pha ban đầu Phi= ?
\(A=-3\cdot cos\left(w\cdot t+pi\right)\)
\(=3\cdot cos\left(pi+wt+pi\right)\)
\(=3\cdot cos\left(wt+2pi\right)\)
=>Biên độ dao động là A=3
Pha ban đầu là \(\varphi=2pi\)
Một vật dao động điều hòa theo phương trình: x= 5cos(10\(\pi\)t-\(\pi\)) cm. Thời gian vật đi được quãng đường 12,5 cm (kể từ t = 0) là
Một vật dao động điều hoa theo phương trình x = cos(\(\pi t\)-2\(\pi\)/3) (cm). Thời gian vật đi được quảng đường 5 cm kể từ thời điểm ban đầu t=0 là
S=5cm= 4+1= T+T/6 = 7T/6( do cung ban đầu là 2pi/3, do A=1 nên T=4)
\(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2\)
thời gian đi được = 7*2/6=7/3s.
Một vật dao động điều hoà theo phương trình xin 10cos(\(\pi\)t+\(\pi\)/3)cm). Thời gian tính từ lúc vật bắt đầu dao động (t = 0) đến khi vật đi được quãng đường 30 cm là
S=30=20+10=T/2+T/6=2T/3
T=2pi/pi=2
=> thời gian = 2*2/3=4/3s
Một vật dao động điều hoà với T = 2s và biên độ A. Quảng đường dài nhất vật đi được trong 1/3s là
Góc quay được trong 1/3 giây là;
\(\text{Δ}\varphi=\omega\cdot\text{Δ}t=\dfrac{2pi}{T}\cdot\text{Δ}t=\dfrac{2pi}{3}\cdot\dfrac{1}{3}=\dfrac{2pi}{6}=\dfrac{pi}{3}\)
Độ dài quãng đường lớn nhất vật đi được trong 1/3 giây là;
\(S_{max}=2\cdot A\cdot sin\left(\dfrac{pi}{3}:2\right)=2\cdot A\cdot sin\left(\dfrac{pi}{6}\right)=A\)(m)
Để tính quảng đường dài nhất mà vật đi được trong 1/3s, chúng ta có thể sử dụng công thức quảng đường dài nhất của vật dao động điều hoà: Smax = A. Trong trường hợp này, vật dao động điều hoà với chu kỳ T = 2s và biên độ A. Vì vậy, quảng đường dài nhất mà vật đi được trong 1/3s là A.
Một vật dao động điều hòa với phương trình: x = 4cos(4\(\pi\)t + x/4)(cm). Quảng đường và số lần vật qua vị trí x = -2cm từ t1=0,25s dến t2=2,125 s là
Để tính quảng đường và số lần vật qua vị trí x = -2cm trong khoảng thời gian từ t1 = 0.25s đến t2 = 2.125s, chúng ta cần tìm giá trị của t khi vị trí x bằng -2cm.
Theo phương trình x = 4cos(4πt + x/4), ta có: 4cos(4πt + x/4) = -2 cos(4πt + x/4) = -1/2
Để tìm giá trị của t, ta sử dụng hàm nghịch đảo của hàm cos: 4πt + x/4 = π + 2kπ hoặc 4πt + x/4 = 2π - 2kπ, với k là số nguyên.
Giải phương trình đầu tiên: 4πt + x/4 = π + 2kπ 4πt = π + 2kπ - x/4 t = (π + 2kπ - x/4) / (4π)
Giải phương trình thứ hai: 4πt + x/4 = 2π - 2kπ 4πt = 2π - 2kπ - x/4 t = (2π - 2kπ - x/4) / (4π)
Từ đây, ta có thể tính giá trị của t bằng cách thay x = -2cm, kết hợp với giá trị của k từ t1 đến t2:
t1 = (π + 2kπ + 2/4) / (4π) t2 = (2π - 2kπ + 2/4) / (4π)
Từ đó, ta tính được quảng đường vật đi được: S1 = 4cos(4πt1 + x/4) S2 = 4cos(4πt2 + x/4)
Vậy, quảng đường và số lần vật qua vị trí x = -2cm từ t1=0.25s đến t2=2.125s là S2 - S1 và số lần vật qua vị trí x = -2cm sẽ là số k thỏa mãn trong khoảng từ t1 đến t2
Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 5 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/ 3. Lấy \(\pi^2\) = 10. Tần số dao động của vật là
Để tìm tần số dao động của con lắc, ta có công thức:
f = 1/T
Trong đó: f là tần số dao động (Hz) T là chu kì dao động (s)
Theo đề bài, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/3. Độ lớn gia tốc của con lắc được tính bằng công thức:
a = -ω²x
Trong đó: a là gia tốc (cm/s²) ω là góc tốc độ góc của con lắc (rad/s) x là biên độ dao động (cm)
Ta có thể tính được ω bằng công thức:
ω = 2πf
Thay vào công thức gia tốc, ta có:
a = -(2πf)²x = -4π²f²x
Đề bài cho biết gia tốc không vượt quá 100 cm/s, nên ta có:
100 ≥ 4π²f²x
Với x = 5 cm, ta có:
100 ≥ 4π²f²(5)
Simplifying the equation:
5 ≥ π²f²
Từ đó ta có:
f² ≤ 5/π²
f ≤ √(5/π²)
f ≤ √(5/π²) ≈ 0.798 Hz
Vậy tần số dao động của con lắc là khoảng 0.798 Hz.
Một vật dao động điều hòa với tần số góc 10 rad/s. Tại thời điểm t vật có li độ 5 cm. Tại thời điểm t+ T/4 thì vận tốc của vật có giá trị là
Để tính vận tốc của vật tại thời điểm t+ T/4, ta có thể sử dụng công thức vận tốc của vật dao động điều hòa:
v = -ωA sin(ωt + φ)
Trong đó: v là vận tốc của vật (cm/s) ω là tần số góc của vật (rad/s) A là biên độ của vật (cm) t là thời gian (s) φ là pha ban đầu của vật (rad)
Theo đề bài, tần số góc của vật là 10 rad/s và li độ của vật là 5 cm. Ta không có thông tin về pha ban đầu của vật, nên không thể tính chính xác vận tốc của vật tại thời điểm t+ T/4.