Tính \(\cos \frac{{7\pi }}{{12}} + \cos \frac{\pi }{{12}}\)
Tính \(\cos \frac{{7\pi }}{{12}} + \cos \frac{\pi }{{12}}\)
Trong bài toán khởi động, cho biết vòm cổng rộng 120 cm và khoảng cách từ B đến đường kính AH là 27 cm. Tính \(\sin \alpha \) và \(\cos \alpha \), từ đó tính khoảng cách từ điểm C đến đường kính AH. Làm tròn kết quả đến hàng phần mười.
Ta có: \(OA = OB = 120:2 = 60\)
Xét tam giác OBB’ có:
\(\sin \widehat {BOB'} = \frac{{BB'}}{{OB}} = \frac{{27}}{{60}} = \frac{9}{{20}}\)
\(\widehat {AOC} = 2\widehat {BOB'}\)
(Vì số đo cung AC gấp 2 lần số đo cung AB)
Xét tam giác OCC’ vuông tại C’ có:
\(\begin{array}{l}\sin \widehat {COC'} = \frac{{CC'}}{{OC}}\\ \Leftrightarrow CC' = OC.\sin \widehat {COC'} = OC.\sin \left( {2\widehat {BOB'}} \right)\end{array}\)
Mà \(\sin \left( {2\widehat {BOB'}} \right) = 2.\sin \widehat {BOB'}.cos\widehat {BOB'}\)
\( = 2.\frac{9}{{20}}.\frac{{\sqrt {319} }}{{20}} = \frac{{9\sqrt {319} }}{{400}}\)
Vậy khoảng cách từ C đến AH là \(60.\frac{{9\sqrt {319} }}{{200}} \approx 48,2cm\).
Trả lời bởi Quoc Tran Anh LeTính \(\cos \frac{\pi }{8}\) và \(\tan \frac{\pi }{8}\)
Ta có:
\(\begin{array}{l}cos\left( {\frac{\pi }{4}} \right) = cos\left( {2.\frac{\pi }{8}} \right) = 2co{s^2}\frac{\pi }{8} - 1 = \frac{{\sqrt 2 }}{2}\\ \Rightarrow co{s^2}\frac{\pi }{8} = \frac{{\sqrt 2 + 2}}{4}\end{array}\)
\( \Rightarrow cos\frac{\pi }{8} = \sqrt {\frac{{\sqrt 2 + 2}}{4}} = \frac{{\sqrt {\sqrt 2 + 2} }}{2}\) (vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))
Ta có:
\(\tan \left( {\frac{\pi }{4}} \right) = \tan \left( {2.\frac{\pi }{8}} \right) = \frac{{2\tan \frac{\pi }{8}}}{{1 - {{\tan }^2}\frac{\pi }{8}}} = 1\)
\(\begin{array}{l} \Leftrightarrow 1 - {\tan ^2}\frac{\pi }{8} = 2\tan \frac{\pi }{8}\\ \Leftrightarrow {\tan ^2}\frac{\pi }{8} + 2\tan \frac{\pi }{8} - 1 = 0\end{array}\)
\( \Leftrightarrow \tan \frac{\pi }{8} = - 1 + \sqrt 2 \)(vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))
Trả lời bởi Quoc Tran Anh LeÁp dụng công thức biến đổi tích thành tổng cho hai góc lượng giác \(\alpha = \frac{{\alpha + \beta }}{2},\beta = \frac{{\alpha - \beta }}{2}\) ta được đẳng thức nào?
Ta có:
\(\begin{array}{l}\cos \alpha \cos \beta = \cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha + \beta }}{2} + \frac{{\alpha - \beta }}{2}} \right) + \cos \left( {\frac{{\alpha + \beta }}{2} - \frac{{\alpha - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \alpha + \cos \beta } \right)\end{array}\)
\(\begin{array}{l}\sin \alpha \sin \beta = \sin \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}\\ = \frac{1}{2}\left[ {\cos \left( {\frac{{\alpha + \beta }}{2} - \frac{{\alpha - \beta }}{2}} \right) - \cos \left( {\frac{{\alpha + \beta }}{2} + \frac{{\alpha - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\cos \beta - \cos \alpha } \right)\end{array}\)
\(\begin{array}{l}\sin \alpha \cos \beta = \sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\\ = \frac{1}{2}\left[ {\sin \left( {\frac{{\alpha + \beta }}{2} + \frac{{\alpha - \beta }}{2}} \right) + \sin \left( {\frac{{\alpha + \beta }}{2} - \frac{{\alpha - \beta }}{2}} \right)} \right]\\ = \frac{1}{2}\left( {\sin \alpha + \sin \beta } \right)\end{array}\)
Trả lời bởi Quoc Tran Anh LeTừ công thức cộng, hãy tính tổng và hiệu của:
a) \(\cos \left( {\alpha - b} \right)\) và \(\cos \left( {\alpha + \beta } \right)\);
b) \(\sin \left( {\alpha - \beta } \right)\)và \(\sin \left( {\alpha + \beta } \right)\).
a,
\(\begin{array}{l}\cos \left( {\alpha - b} \right) + \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta + \cos \alpha \cos \beta - \sin \alpha sin\beta \\ = 2\cos \alpha \cos \beta \end{array}\)
\(\begin{array}{l}\cos \left( {\alpha - b} \right) - \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta - \cos \alpha \cos \beta + \sin \alpha sin\beta \\ = 2\sin \alpha sin\beta \end{array}\)
b,
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) - \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta - \sin \alpha \cos \beta - \cos \alpha sin\beta \\ = - 2\cos \alpha sin\beta \end{array}\)
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta + \sin \alpha \cos \beta + \cos \alpha sin\beta \\ = 2\sin \alpha \cos \beta \end{array}\)
Trả lời bởi Quoc Tran Anh LeHãy áp dụng công thức cộng cho trường hợp β = α và tính các giá trị lượng giác của góc 2α.
\(\begin{array}{l}\cos \left( {\alpha + \alpha } \right) = \cos 2\alpha = \cos \alpha \cos \alpha - \sin \alpha sin\alpha = {\cos ^2}\alpha - {\sin ^2}\alpha \\ = {\cos ^2}\alpha + {\sin ^2}\alpha - 2{\sin ^2}\alpha = 1 - 2{\sin ^2}\alpha = 2{\cos ^2}a - 1\end{array}\)
\(\tan 2\alpha = \tan \left( {\alpha + \alpha } \right) = \frac{{\tan \alpha + \tan \alpha }}{{1 - \tan \alpha .\tan \alpha }} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\)
Trả lời bởi Quoc Tran Anh LeQuan sát Hình 1. Từ hai cách tính tích vô hướng của vectơ \(\overrightarrow {OM} ,\overrightarrow {ON} \) sau đây:
\(\overrightarrow {OM} .\overrightarrow {ON} = \left| {\overrightarrow {OM} } \right|.\left| {\overrightarrow {ON} } \right|.cos\left( {\overrightarrow {OM} ,\overrightarrow {ON} } \right)\)\( = cos\left( {\overrightarrow {OM} ,\overrightarrow {ON} } \right) = cos\left( {\alpha - \beta } \right)\)
\(\overrightarrow {OM} .\overrightarrow {ON} = {x_M}.{x_N} + {y_M}.{y_N}\)
Hãy suy ra công thức tính cos(α – β) theo các giá trị lượng giác của α và β. Từ đó, hãy suy ra công thức cos(α + β) bằng cách thay β bằng – β.
\(cos\left(\alpha-\beta\right)=x_M\cdot x_N=cos\alpha\cdot cos\beta+sin\alpha\cdot sin\beta\\ cos\left(\alpha+\beta\right)=cos\left[\alpha-\left(-\beta\right)\right]=cos\alpha\cdot cos\left(-\beta\right)+sin\alpha\cdot sin\left(-\beta\right)=cos\alpha\cdot cos\beta-sin\alpha\cdot sin\beta\)
Trả lời bởi Hà Quang MinhTrong kiến trúc, các vòm cổng bằng đá thường có hình nửa đường tròn để có thể chịu lực tốt. Trong hình bên, vòm cổng được ghép bởi sáu phiến đá hai bên tạo thành các cung AB, BC, CD, EF, FG, GH bằng nhau và một phiến đá chốt ở đỉnh. Nếu biết chiều rộng cổng và khoảng cách từ điểm B đến đường kính AH, làm thế nào để tính được khoảng cách từ điểm C đến AH?
Tính \(\sin \frac{\pi }{{12}}\) và \(\tan \frac{\pi }{{12}}\)
\(sin\left(\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{3}cos\dfrac{\pi}{4}-cos\dfrac{\pi}{3}sin\dfrac{\pi}{4}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ cos\left(\dfrac{\pi}{12}\right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ tan\left(\dfrac{\pi}{12}\right)=\dfrac{sin\dfrac{\pi}{12}}{cos\dfrac{\pi}{12}}=\dfrac{\dfrac{\sqrt{6}-\sqrt{2}}{4}}{\dfrac{\sqrt{6}+\sqrt{2}}{4}}=2-\sqrt{3}\)
Trả lời bởi Hà Quang MinhTính giá trị của các biểu thức\(\sin \frac{\pi }{{24}}\cos \frac{{5\pi }}{{24}}\) và \(\sin \frac{{7\pi }}{8}\sin \frac{{5\pi }}{8}\)
Ta có:
\(\begin{array}{l}\sin \frac{\pi }{{24}}\cos \frac{{5\pi }}{{24}} = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{{24}} + \frac{{5\pi }}{{24}}} \right) + \sin \left( {\frac{\pi }{{24}} - \frac{{5\pi }}{{24}}} \right)} \right]\\ = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{4}} \right) + \sin \left( { - \frac{\pi }{6}} \right)} \right]\\ = \frac{1}{2}\left[ {\frac{{\sqrt 2 }}{2} - \frac{1}{2}} \right] = \frac{{\sqrt 2 - 1}}{4}\end{array}\)
Ta có:
\(\begin{array}{l}\sin \frac{{7\pi }}{8}\sin \frac{{5\pi }}{8} = \frac{1}{2}\left[ {\cos \left( {\frac{{7\pi }}{8} - \frac{{5\pi }}{8}} \right) - \cos \left( {\frac{{7\pi }}{8} + \frac{{5\pi }}{8}} \right)} \right]\\ = \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{4}} \right) - \cos \left( {\frac{{3\pi }}{2}} \right)} \right]\\ = \frac{1}{2}.\left( {\frac{{\sqrt 2 }}{2} + 0} \right) = \frac{{\sqrt 2 }}{4}\end{array}\)
Trả lời bởi Quoc Tran Anh Le
\(cos\dfrac{7\pi}{12}+cos\dfrac{\pi}{12}\\ =2.cos\dfrac{\dfrac{7\pi}{12}+\dfrac{\pi}{12}}{2}\\ =2.cos\dfrac{\pi}{3}.cos\dfrac{\pi}{4}\\ =2.\dfrac{1}{2}.\dfrac{\sqrt{2}}{2}\\ =\dfrac{\sqrt{2}}{2}\)
Trả lời bởi Mai Trung Hải Phong