Bài 3. Các công thức lượng giác

H24

Tính \(\cos \frac{\pi }{8}\) và \(\tan \frac{\pi }{8}\)

QL
21 tháng 9 2023 lúc 21:35

Ta có:

\(\begin{array}{l}cos\left( {\frac{\pi }{4}} \right) = cos\left( {2.\frac{\pi }{8}} \right) = 2co{s^2}\frac{\pi }{8} - 1 = \frac{{\sqrt 2 }}{2}\\ \Rightarrow co{s^2}\frac{\pi }{8} = \frac{{\sqrt 2  + 2}}{4}\end{array}\)

\( \Rightarrow cos\frac{\pi }{8} = \sqrt {\frac{{\sqrt 2  + 2}}{4}}  = \frac{{\sqrt {\sqrt 2  + 2} }}{2}\) (vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))

Ta có:

\(\tan \left( {\frac{\pi }{4}} \right) = \tan \left( {2.\frac{\pi }{8}} \right) = \frac{{2\tan \frac{\pi }{8}}}{{1 - {{\tan }^2}\frac{\pi }{8}}} = 1\)

\(\begin{array}{l} \Leftrightarrow 1 - {\tan ^2}\frac{\pi }{8} = 2\tan \frac{\pi }{8}\\ \Leftrightarrow {\tan ^2}\frac{\pi }{8} + 2\tan \frac{\pi }{8} - 1 = 0\end{array}\)

\( \Leftrightarrow \tan \frac{\pi }{8} =  - 1 + \sqrt 2 \)(vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết