Bài 3. Các công thức lượng giác

H24
Hướng dẫn giải Thảo luận (1)

\(a,cos\left(\dfrac{5\pi}{12}\right)=cos\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ sin\left(\dfrac{5\pi}{12}\right)=sin\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)+cos\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ tan\left(\dfrac{5\pi}{12}\right)=\dfrac{sin\left(\dfrac{5\pi}{12}\right)}{cos\left(\dfrac{5\pi}{12}\right)} =2-\sqrt{3}\\ cot\left(\dfrac{5\pi}{12}\right)=\dfrac{1}{tan\left(\dfrac{5\pi}{12}\right)}=\dfrac{1}{2-\sqrt{3}}\)

\(b,cos\left(-555^o\right)=cos\left(3\pi+\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=-\left[cos\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)+sin\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)\right]=-\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ sin\left(-555^o\right)=sin\left(3\pi+\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)-cos\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ tan\left(-555^o\right)=\dfrac{sin\left(-555^o\right)}{cos\left(-555^o\right)}=-2+\sqrt{3}\\ cot\left(-555^o\right)=\dfrac{1}{tan\left(-555^o\right)}=\dfrac{1}{-2+\sqrt{3}}=-2-\sqrt{3}\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (2)

\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)

Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)

\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)

\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (2)

\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)

Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)

Ta có: 

\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)

Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)

\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

Xét tam giác ABC vuông tại B có:

\(\tan \widehat {BAC} = \frac{3}{4}\)

Suy ra, \(\tan \widehat {BAD} = \tan \left( {\widehat {BAC} + \widehat {CAD}} \right) = \tan \left( {\widehat {BAC} + {{30}^0}} \right)\)

\( = \frac{{\tan \widehat {BAC} + \tan {{30}^0}}}{{1 - \tan \widehat {BAC}.\tan {{30}^0}}} = \frac{{\frac{3}{4} + \frac{{\sqrt 3 }}{3}}}{{1 - \frac{3}{4}.\frac{{\sqrt 3 }}{3}}} \approx 2,34\)

Xét tam giác vuông ABD vuông tại B có:

\(\begin{array}{l}BD = AB.\tan \widehat {BAD} = 4.2,34 \approx 9,36\\ \Rightarrow CD = BD - BC \approx 9,36 - 3 \approx 6,36\end{array}\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (1)

a, Tại \(\alpha  = \frac{\pi }{2}\) thì H trùng I, M trùng O nên MH = OI do đó OM = IH.

Xét tam giác AHI vuông tại H có: \(IH = cos\alpha .IA = 8cos\alpha .\)

\( \Rightarrow {x_M} = OM = IH = 8cos\alpha \)

b, Sau khi chuyển động được 1 phút, trục khuỷu quay được một góc là \(\alpha \)

Khi đó \({x_M} =  - 3cm \Rightarrow cos\alpha  =  - \frac{3}{8}\)

Sau khi chuyển động 2 phút, trục khuỷu quay được một góc \(2\alpha \), nên:

\({x_M} = 8cos2\alpha  = 8\left( {2{{\cos }^2}\alpha  - 1} \right)\)\( = 8\left( {2{{\left( { - \frac{3}{8}} \right)}^2} - 1} \right) \approx  - 5,8 cm\)

Trả lời bởi Quoc Tran Anh Le
H24
Hướng dẫn giải Thảo luận (2)

a, Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.

Ta có: MH = 60 – 30 = 30 m.

Khi đó hoành độ điểm M là 30.

⇒ \(\;\sin \alpha {\rm{ }} = \;\frac{{MH}}{{OM}} = \;\frac{{30}}{{31}}\)

\( \Rightarrow \cos \alpha  = \sqrt {1 - {{\left( {\frac{{30}}{{31}}} \right)}^2}}  = \frac{{\sqrt {61} }}{{31}}\)

b, Vì các cánh quạt tạo thành 3 góc bằng nhau nên \(\widehat {MOP} = \widehat {NOP} = \widehat {MON} = {120^0}\)

\( \Rightarrow \widehat {AOP} = \widehat {MOP} - \widehat {MOA}\)

\( \Leftrightarrow \sin \widehat {AOP} = \sin \left( {\widehat {MOP} - \widehat {MOA}} \right) = \sin \widehat {MOP}.\cos \widehat {MOA} - \cos \widehat {MOP}.\sin \widehat {MOA}\)

\( = \sin \frac{{2\pi }}{3}.\cos \alpha  - \cos \frac{{2\pi }}{3}.\sin \alpha  \approx 0,7\)

Vì vậy chiều cao của điểm P so với mặt đất là:

31. \(\sin \widehat {AOP}\) + 60 = 31.0,7+ 60 \( \approx \) 81,76 m.

Ta có:

\(\cos \widehat {AOP} \approx \sqrt {1 - 0,{7^2}}  = 0,71\)

\(\widehat {AON} = \widehat {AOP} + \widehat {PON}\)

\(\begin{array}{l} \Leftrightarrow \sin \widehat {AON} = \sin \left( {\widehat {AOP} + \widehat {PON}} \right)\\ \Leftrightarrow \sin \widehat {AON} = \sin \widehat {AOP}.\cos \widehat {PON} + \cos \widehat {AOP}.\sin \widehat {PON}\\ \Leftrightarrow \sin \widehat {AON} = 0,7.\cos \frac{{2\pi }}{3} + 0,71.\sin \frac{{2\pi }}{3} \approx 0,26\end{array}\)

\( \Rightarrow \sin \left( {OA,ON} \right) = \sin \widehat {AON} \approx 0,26\)

Vì vậy chiều cao của điểm N so với mặt đất là:

31. \(\sin \widehat {AON}\) + 60 = 31.0,26+ 60\( \approx \) 68,2 m.

Trả lời bởi Quoc Tran Anh Le