Không dùng máy tính cầm tay, tính các giá trị lượng giác của các góc:
a, \(\frac{{5\pi }}{{12}}\)
b, \(-{\rm{ }}{555^0}\)
Không dùng máy tính cầm tay, tính các giá trị lượng giác của các góc:
a, \(\frac{{5\pi }}{{12}}\)
b, \(-{\rm{ }}{555^0}\)
Tính \(\sin \left( {\alpha + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha = - \frac{5}{{13}},\pi < \alpha < \frac{{3\pi }}{2}\)
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)
Trả lời bởi Quoc Tran Anh LeTính các giá trị lượng giác của góc 2\(\alpha \), biết:
a, \(\sin \alpha = \frac{{\sqrt 3 }}{3},0 < \alpha < \frac{\pi }{2}\)
b, \(\sin \frac{\alpha }{2} = \frac{3}{4},\pi < \alpha < 2\pi \)
\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)
Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)
\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)
Trả lời bởi Hà Quang MinhRút gọn các biểu thức sau:
a, \(\sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right) - cos\alpha \),
b, \({\left( {cos\alpha + \sin \alpha } \right)^2} - \sin 2\alpha \)
\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)
\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)
Trả lời bởi Hà Quang MinhTính các giá trị lượng giác của góc \(\alpha \), biết:
a, \(cos2\alpha = \frac{2}{5}, - \frac{\pi }{2} < \alpha < 0\)
b, \(\sin 2\alpha = - \frac{4}{9},\frac{\pi }{2} < \alpha < \frac{{3\pi }}{4}\)
\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)
Ta có:
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)
Trả lời bởi Hà Quang MinhChứng minh rằng tam giác ABC, ta có \(\sin A = \sin B.\cos C + \sin C.\cos B\)
Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)
\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)
Trả lời bởi Quoc Tran Anh LeTrong Hình 3, tam giác ABC vuông tại B và có hai cạnh góc vuông là AB = 4, BC = 3. Vẽ điểm D nằm trên tia đối của tia CB thỏa mãn \(\widehat {CAD} = {30^0}\). Tính \(\tan \widehat {BAD}\), từ đó tính độ dài cạnh CD.
Xét tam giác ABC vuông tại B có:
\(\tan \widehat {BAC} = \frac{3}{4}\)
Suy ra, \(\tan \widehat {BAD} = \tan \left( {\widehat {BAC} + \widehat {CAD}} \right) = \tan \left( {\widehat {BAC} + {{30}^0}} \right)\)
\( = \frac{{\tan \widehat {BAC} + \tan {{30}^0}}}{{1 - \tan \widehat {BAC}.\tan {{30}^0}}} = \frac{{\frac{3}{4} + \frac{{\sqrt 3 }}{3}}}{{1 - \frac{3}{4}.\frac{{\sqrt 3 }}{3}}} \approx 2,34\)
Xét tam giác vuông ABD vuông tại B có:
\(\begin{array}{l}BD = AB.\tan \widehat {BAD} = 4.2,34 \approx 9,36\\ \Rightarrow CD = BD - BC \approx 9,36 - 3 \approx 6,36\end{array}\)
Trả lời bởi Quoc Tran Anh LeTrong Hình 4, pít – tông M của động cơ chuyển động tịnh tiến qua lại dọc theo xi lanh làm quay trục khuỷu IA. Ban đầu I, A, M thẳng hàng. Cho \(\alpha \) là góc quay của trục khuỷu, O là vị trí của pít – tông khi \(\alpha = \frac{\pi }{2}\) và H là hình chiếu của A lên Ix. Trục khuỷu IA rất ngắn so với độ dài thanh truyền AM nên có thể xem như độ dài MH không đổi và gần bằng MA.
a) Biết IA = 8cm, viết công thức tính tọa độ \({x_M}\)của điểm M trên trục Ox theo \(\alpha \).
b) Ban đầu \(\alpha = 0\). Sau 1 phút chuyển động, \({x_M}\)= – 3cm. Xác định\({x_M}\) sau 2 phút chuyển động. Làm tròn kết quả đến hàng phần mười
a, Tại \(\alpha = \frac{\pi }{2}\) thì H trùng I, M trùng O nên MH = OI do đó OM = IH.
Xét tam giác AHI vuông tại H có: \(IH = cos\alpha .IA = 8cos\alpha .\)
\( \Rightarrow {x_M} = OM = IH = 8cos\alpha \)
b, Sau khi chuyển động được 1 phút, trục khuỷu quay được một góc là \(\alpha \)
Khi đó \({x_M} = - 3cm \Rightarrow cos\alpha = - \frac{3}{8}\)
Sau khi chuyển động 2 phút, trục khuỷu quay được một góc \(2\alpha \), nên:
\({x_M} = 8cos2\alpha = 8\left( {2{{\cos }^2}\alpha - 1} \right)\)\( = 8\left( {2{{\left( { - \frac{3}{8}} \right)}^2} - 1} \right) \approx - 5,8 cm\)
Trả lời bởi Quoc Tran Anh LeTrong Hình 5, ba điểm M, N, P nằm ở đầu các cánh quạt của tua bin gió. Biết các cánh quạt dài 31m, độ cao của điểm M so với mặt đất là 30m, góc giữa các cánh quạt là \(\frac{{2\pi }}{3}\) và số đo góc (OA, OM) là \(\alpha \).
a) Tính sin\(\alpha \) và cos \(\alpha \).
b) Tính sin của các góc lượng giác (OA, ON) và (OA, OP) từ đó tính chiều cao của các điểm N và P so với mặt đất (theo đơn vị mét). Làm tròn kết quả đến hàng phần trăm.
a, Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.
Ta có: MH = 60 – 30 = 30 m.
Khi đó hoành độ điểm M là 30.
⇒ \(\;\sin \alpha {\rm{ }} = \;\frac{{MH}}{{OM}} = \;\frac{{30}}{{31}}\)
\( \Rightarrow \cos \alpha = \sqrt {1 - {{\left( {\frac{{30}}{{31}}} \right)}^2}} = \frac{{\sqrt {61} }}{{31}}\)
b, Vì các cánh quạt tạo thành 3 góc bằng nhau nên \(\widehat {MOP} = \widehat {NOP} = \widehat {MON} = {120^0}\)
\( \Rightarrow \widehat {AOP} = \widehat {MOP} - \widehat {MOA}\)
\( \Leftrightarrow \sin \widehat {AOP} = \sin \left( {\widehat {MOP} - \widehat {MOA}} \right) = \sin \widehat {MOP}.\cos \widehat {MOA} - \cos \widehat {MOP}.\sin \widehat {MOA}\)
\( = \sin \frac{{2\pi }}{3}.\cos \alpha - \cos \frac{{2\pi }}{3}.\sin \alpha \approx 0,7\)
Vì vậy chiều cao của điểm P so với mặt đất là:
31. \(\sin \widehat {AOP}\) + 60 = 31.0,7+ 60 \( \approx \) 81,76 m.
Ta có:
\(\cos \widehat {AOP} \approx \sqrt {1 - 0,{7^2}} = 0,71\)
\(\widehat {AON} = \widehat {AOP} + \widehat {PON}\)
\(\begin{array}{l} \Leftrightarrow \sin \widehat {AON} = \sin \left( {\widehat {AOP} + \widehat {PON}} \right)\\ \Leftrightarrow \sin \widehat {AON} = \sin \widehat {AOP}.\cos \widehat {PON} + \cos \widehat {AOP}.\sin \widehat {PON}\\ \Leftrightarrow \sin \widehat {AON} = 0,7.\cos \frac{{2\pi }}{3} + 0,71.\sin \frac{{2\pi }}{3} \approx 0,26\end{array}\)
\( \Rightarrow \sin \left( {OA,ON} \right) = \sin \widehat {AON} \approx 0,26\)
Vì vậy chiều cao của điểm N so với mặt đất là:
31. \(\sin \widehat {AON}\) + 60 = 31.0,26+ 60\( \approx \) 68,2 m.
Trả lời bởi Quoc Tran Anh Le
\(a,cos\left(\dfrac{5\pi}{12}\right)=cos\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ sin\left(\dfrac{5\pi}{12}\right)=sin\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)+cos\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ tan\left(\dfrac{5\pi}{12}\right)=\dfrac{sin\left(\dfrac{5\pi}{12}\right)}{cos\left(\dfrac{5\pi}{12}\right)} =2-\sqrt{3}\\ cot\left(\dfrac{5\pi}{12}\right)=\dfrac{1}{tan\left(\dfrac{5\pi}{12}\right)}=\dfrac{1}{2-\sqrt{3}}\)
\(b,cos\left(-555^o\right)=cos\left(3\pi+\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=-\left[cos\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)+sin\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)\right]=-\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ sin\left(-555^o\right)=sin\left(3\pi+\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)-cos\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ tan\left(-555^o\right)=\dfrac{sin\left(-555^o\right)}{cos\left(-555^o\right)}=-2+\sqrt{3}\\ cot\left(-555^o\right)=\dfrac{1}{tan\left(-555^o\right)}=\dfrac{1}{-2+\sqrt{3}}=-2-\sqrt{3}\)
Trả lời bởi Hà Quang Minh